Figure S1. Results from fitting the three-component with non-target weights model to the data of Experiment 1. (A) Collapsing over target serial position revealed a reliable main effect of set size on the probability of storing targets, P_s, $F(2, 27) = 24.46, p < 0.001, \eta^2 = 0.64$. P_t varied over target serial position for set size four, $F(3, 27) = 8.54, p < 0.001, \eta^2 = 0.49$, and five, $F(4, 36) = 31.28, p < 0.001, \eta^2 = 0.78$, but not for set size three, $F(2, 18) = 1.56, p = 0.24, \eta^2 = 0.15$. There was also a recency effect in P_n with a linear trend over target serial positions for set sizes four, $F(1, 9) = 15.9, p < 0.01, \eta^2 = 0.64$, and five, $F(1, 9) = 48.7, p < 0.001, \eta^2 = 0.84$, but not for set size three, $F < 1$. The slope was smaller for set size three vs. four, $t(18) = 3.68, p < 0.01, d = 1.65$, and three vs. five, $t(18) = 6.36, p < 0.01, d = 2.84$, but not for set size four vs. five, $t(18) = 1.89, p = 0.08, d = 0.84$. P_t for the first item was higher than predicted by a linear trend over the remaining items for set size five, $t(9) = 5.86, p < 0.001, d = 1.85$, but not for set size four, $t(9) = 2.12, p = 0.06, d = 0.67$, or three, $t(9) = 1.6, p = 0.14, d = 0.51$. (B) There was no main effect of set size on precision, $s.d.$, $F(2, 27) = 2.69, p = 0.09, \eta^2 = 0.17$, nor did $s.d.$ reliably vary over target serial position for set size three, $F < 1$, four, $F(3, 27) = 1.72, p = 0.19, \eta^2 = 0.16$, or five, $F(4, 36) = 1.19, p = 0.33, \eta^2 = 0.12$. (C) There was a main effect of set size on guessing rate, P_g, $F(2, 27) = 4.03, p < 0.05, \eta^2 = 0.23$. P_g reliably varied over target serial position for set size five, $F(4, 36) = 2.78, p < 0.05, \eta^2 = 0.24$, but not for set size three, $F < 1$, or four, $F < 1$. (D) There was a main effect of set size on the probability of reporting a non-target color, P_{nt}, $F(2, 27) = 11.29, p < 0.001, \eta^2 = 0.46$. P_{nt} varied over target serial position for set size four, $F(3, 27) = 5.78, p < 0.01, \eta^2 = 0.39$, and five, $F(4, 36) = 3.30, p < 0.05, \eta^2 = 0.27$, but not for set size three, $F(2, 18) = 1.90, p = 0.18, \eta^2 = 0.17$. Mean estimates for each set size are depicted in the bar graphs on the right. Error bars indicate within-subject SEM, except for the bar graph, which depicts across-subject SEM for each set size condition. * $p < 0.05$, *** $p < 0.001$.