Decision Making and the Avoidance of Cognitive Demand

Wouter Kool and Joseph T. McGuire
Princeton University

Matthew M. Botvinick
Columbia University

Behavioral and economic theories have long maintained that actions are chosen so as to minimize demands for exertion or work, a principle sometimes referred to as the law of less work. The data supporting this idea pertain almost entirely to demands for physical effort. However, the same minimization principle has often been assumed also to apply to cognitive demand. The authors set out to evaluate the validity of this assumption. In 6 behavioral experiments, participants chose freely between courses of action associated with different levels of demand for controlled information processing. Together, the results of these experiments revealed a bias in favor of the less demanding course of action. The bias was obtained across a range of choice settings and demand manipulations and was not wholly attributable to strategic avoidance of errors, minimization of time on task, or maximization of the rate of goal achievement. It is remarkable that the effect also did not depend on awareness of the demand manipulation. Consistent with a motivational account, avoidance of demand displayed sensitivity to task incentives and covaried with individual differences in the efficacy of executive control. The findings reported, together with convergent neuroscientific evidence, lend support to the idea that anticipated cognitive demand plays a significant role in behavioral decision making.

Keywords: decision making, mental effort, cognitive control, motivation

From Physical to Cognitive Work

Hull’s (1943) principle addressed physical effort, and subsequent experiments have focused almost exclusively on physical forms of demand. However, it has been routinely assumed that the law of less work extends to situations involving differential cognitive demands. In a frequently quoted passage, Allport (1954) wrote,

We like to solve problems easily. We can do so best if we can fit them rapidly into a satisfactory category and use this category as a means

This article was published Online First September 20, 2010.
Wouter Kool, Joseph T. McGuire, and Matthew M. Botvinick, Department of Psychology and Neuroscience Institute, Princeton University; Zev B. Rosen, Department of Neurobiology, Columbia University.

The present research was conducted with assistance from Stacy Huffstetler, Steven Ibara, Joseph Luka, Idu Azogu, Francisco Pereira, Janani Prabhatkar, and Sydney Schiff. This research was supported by National Institute of Mental Health Grant MH062196 to Matthew M. Botvinick. Wouter Kool and Joseph T. McGuire contributed equally to the research reported.

Correspondence concerning this article should be addressed to Matthew M. Botvinick, Department of Psychology, Green Hall, Princeton University, Princeton, NJ 08540. E-mail: matthewb@princeton.edu
of prejudging the solution So long as we can get away with
course overgeneralizations we tend to do so. Why? Well, it takes less
effort, and effort, except in the area of our most intense interests, is
disagreeable. (pp. 20–21)

Similar assertions can be found in many places. For example,
Baroody and Ginsburg (1986) accounted for strategy selection in
arithmetic by invoking a “drive for cognitive economy.” In
discussing the processing of political messages, W. J. McGuire
(1969) characterized human beings as “lazy organisms,” seeking to
spend as little mental energy as possible. Taylor (1981) character-
ized humans as “cognitive misers.” And according to Camerer and
Hogarth (1999, p. 9), “Economists instinctively assume thinking is
a costly activity . . . mental effort is like physical effort—people
dislike both.” Smith and Walker (1993) formalized this idea,
proposing a theory of economic choice centering on the role of
decision costs, costs linked to the cognitive or computational effort
required by decision-making strategies.

The concept of an internal cost of effort has been particularly
influential in the field of judgment and decision making. It has
long been observed that human decision makers tend to fall short
of optimal outcomes, in part through a reliance on simplifying
strategies for gathering and integrating information (e.g., Gigeren-
zer & Goldstein, 1996; Simon, 1955; Tversky & Kahneman,
1974). Simplifying strategies might be favored for non-effort-
related reasons; they might speed decisions or lend tractability to
complex situations. However, an influential idea has been that
decision makers evaluate tradeoffs between the effort-related
costs and the accuracy-related benefits of computationally inten-
se strategies (e.g., Payne, Bettman, & Johnson, 1993; Shah &
Oppenheimer, 2008; Slugan, 1980; Smith & Walker, 1993).
Adopting a simpler but less accurate decision strategy could be
subjectively optimal when internal costs of effort are taken into
account (for relevant discussion, see Anderson, 1990; Simon, 1956).

Underscoring the ubiquity of the idea that mental effort is
aversive, the notion has even been invoked to describe individuals
who appear to seek out cognitively demanding tasks. For example,
Eisenberger (1992) proposed that “learned industriousness” arises
from external reinforcement of effortful behavior, which “reduces
effort’s aversiveness” (p. 248). Here, as elsewhere, the costs of
cognitive demand are not considered to operate in isolation but,
rather, to weigh against countervailing incentives. Some such
incentives may arise internally (e.g., a sense of efficacy or “flow”;
see Moneta & Csikszentmihalyi, 1996, for relevant results and
discussion).

Among the many researchers who have invoked the idea of
demand avoidance, a few have made explicit the link to the Hullian
tradition, propounding a “law of least mental effort” (e.g., Ballé,
2002; see also Rosch, 1999; Zipf, 1949). Integrating this idea with
related proposals, effort is most compellingly understood as relat-
ing to demands for controlled information processing or executive
function (Posner & DiGirolamo, 1998; Shiffrin & Schneider,
1977). Indeed, there is direct precedent for the idea that decision
making involves a tendency to minimize control or executive

demands: A number of cognitive modeling enterprises have ex-
plicitly incorporated a principle of “minimal control” (Taatgen,
2007; Yeung & Monsell, 2003) or “least-effort,” again referring to
executive control (Gray, 2000; see also Anderson, 1990). There is
also direct evidence that human agents offload control demands
when possible, relying on information in the perceptual envi-
ronment rather than internal working memory or cognitive control
representations (Ballard, Hayhoe, Pook, & Rao, 1997; Droll &
Hayhoe, 2007).

Available Evidence

The law of least mental effort clearly has intuitive appeal, in part
from the strong analogical relationship between mental and phys-
ical effort (for discussion, see Eisenberger, 1992). It also makes
sense from a normative perspective, because a bias against mental
effort would steer cognition toward more efficient tasks (see
Botvinick, 2007) and might preserve limited cognitive resources
(see Muraven & Baumeister, 2000). It is remarkable, however, that
despite its widespread application, the law of least mental effort
appears never to have been subjected to a direct experimental test.

To be sure, a wide range of observations have been discussed in
terms of effort avoidance, such as preferences for particular strat-
agogies in mathematics (Baroody & Ginsburg, 1986), route selection
(Christenfeld, 1995), attitude formation (Alport, 1954), decision
making (Payne, Bettman, & Johnson, 1988), and task switching
(Todd, Cohen, Botvinick, & Dayan, 2010; Yeung & Monsell,
2003). However, in the vast majority of such cases, effort mini-
mization has been proposed as an explanatory principle, rather
than a hypothesis to be tested in its own right.

In one test of effort-guided strategy selection (MacLeod, Hunt,
& Mathews, 1978; Mathews, Hunt, & MacLeod, 1980), partici-
pants performed a sentence–picture verification task that afforded
either a visual-spatial or a verbal strategy. Strategy selection cor-
related with abilities, such that subjects with relatively high verbal
working memory capacity tended to employ the verbal strategy,
and subjects with relatively high visual working memory capacity
tended to employ the visual-spatial strategy. Reichle, Carpenter,
and Just (2000) characterized this pattern as evidence for “one
basis for strategy selection: minimization of cognitive workload”
(p. 261). Nevertheless, even here, the evidence is correlational
rather than experimental and pertains to the selection of covert
strategies, rather than overt actions. More important, these and
related results leave open the possibility that people choose less
effortful strategies not in order to avoid effort per se but, instead,
to minimize response times or error rates.

In sum, despite continual invocation over the years, and not-
withstanding some indirect empirical evidence, the law of least
mental effort—the idea that anticipated cognitive demand weighs
as a cost in behavioral decision making—remains in need of a
straightforward experimental test.

The Present Experiments

Our experiments were built around a novel behavioral paradigm,
involving what we call demand selection tasks (DSTs). Here the
participant faces a recurring choice between two alternative lines
of action, associated with different levels of cognitive demand. In
our first experiments, the choice situation itself was modeled
loosely on earlier studies of reward-based decision making by
Bechara and colleagues (Bechara, Damasio, Damasio, & Lee,
1999; Bechara, Damasio, Tranel, & Damasio, 1997; Bechara et al.,
1996), in which participants chose between decks of cards with
different payoffs. Here and in subsequent elaborations of the DST
paradigm, our general prediction was that participants would develop a tendency to select the course of action associated with the least cognitive demand.

Following the work reviewed above, we associate mental effort with demands for controlled information processing or executive function. In keeping with this, we began with an experiment that manipulated cognitive demand by varying the frequency of shifts between tasks. Task switching is generally understood to demand executive control (see Monsell, 2003), and evidence suggests that when two task sets are available, people tend to follow the same task repeatedly (Arrington & Logan, 2004). Participants in Experiment 1 chose freely between two response options that carried different subsequent task-switching requirements. Our entry-level prediction was that participants would favor courses of action that committed them to less frequent task switching.

Experiment 1

Method

Participants. Forty-three subjects from the University of Pennsylvania community (18–26 years of age; 25 women, 18 men) participated. In this and all subsequent experiments, participants were compensated with course credit or nominal payment for participation and provided informed consent following procedures approved by the applicable Institutional Review Board.

Materials and procedure. The DST was computer based and was programmed using E-Prime (Psychology Software Tools). On each of 500 trials, the monitor displayed two cards (digitized images of face-down playing cards), symmetrically positioned to the left and right of center, one tinted orange the other green (see Figure 1a). Subjects used the keyboard to select one card, pressing F to select the left card and J to select the right. The face of the selected card then appeared above the card’s original position, displaying a single Arabic numeral (between 1 and 9, inclusive, but excluding 5) on a white field. The numeral was displayed in either purple or blue. If it was blue, subjects were to make a magnitude judgment, saying “yes” if the number was less than five and otherwise responding “no.” For purple numerals, subjects were to make a parity judgment, responding “yes” if the number was even and otherwise responding “no.” Verbal responses were registered by a voice key, which immediately restored the original face-down display, beginning the next trial.

Subjects initially practiced the classification tasks with numerals presented in isolation (rather than on cards). Ten-trial blocks were performed until a within-block accuracy of 90% was attained. Subjects were introduced to the decks task with the explanation that all cards would show a colored number, with both colors occurring in each deck, and that they should respond to each number just as in the practice task. Subjects were told that they were free to choose from either deck on any trial and that they should “feel free to move from one deck to the other whenever you choose” but also that “if one deck begins to seem preferable, feel free to choose that deck more often.”

Unannounced to subjects, there was one important difference between the two decks. In one deck (referred to as the **low-demand deck**) the color of each numeral matched the color occurring on the previous trial on 90% of occasions. In the other (high-demand) deck, a match occurred on only 10% of occasions. The latter deck thus required more frequent switching from one task to the other. The relative positions of the high- and low-demand decks were counterbalanced across subjects. On each trial, the subject’s deck choice was recorded, as were choice reaction time (RT) and verbal response RT.

We took measures to guard against three potential alternative sources of a low-demand choice bias. First, we were concerned that participants might select the low-demand deck to minimize the length of the session. To prevent this, participants were told they would perform the task for a fixed 1-h period, and that they could go at their own chosen pace (although, in fact, the task was terminated after 500 trials, always well ahead of the 1-h mark). Second, we were concerned that if errors were more frequent on the high-demand deck, participants might favor the low-demand deck as a strategy to optimize their accuracy. To address this possibility, we recorded response accuracy and conducted follow-up analyses on the subgroup of participants who ultimately committed errors at a lower rate on the high-demand deck than the low-demand deck. Third, we were concerned that participants

![Figure 1.](image-url)

Figure 1. a. Example of cues in the demand selection task of Experiment 1. Cues appeared as decks of cards. Subjects used the keyboard to select one deck, causing it to reveal a blue or purple number. They then made a vocal response to the number. b. Example of cues in Experiment 2, which were depicted as striped or solid-colored balls. c. Example of cues in Experiments 3–5. Subjects were presented with eight separate pairs of choice cues over the course of one session.
might draw inferences about the goals of the experiment and adjust their choice behavior to comply with perceived expectations. To assess this, we had participants complete a follow-up questionnaire evaluating their awareness of the difference between the decks (the questionnaire is shown in Table 1).

Analysis. To validate the task-switching manipulation, we compared verbal RTs via a two-way repeated measures analysis of variance (ANOVA) with factors for trial type (repetition vs. switch) and deck. Error rates for the high- and low-demand decks were compared in a Wilcoxon signed-rank test. To test for deck preference, we tested the low-demand selection rates for individual subjects against the chance rate of 0.50 in a Wilcoxon signed-rank test. As a result of equipment loss, deck-wise error rates were ultimately available for 39 subjects. Additional analyses, described below, were conducted for participants who happened to commit a higher proportion of errors on the low-demand deck than the high-demand deck and for participants who denied awareness of any difference between the decks.

Results

Verbal RT. Verbal RT for the two decks and two trial types (task repetition, switch) are listed in Table 2. The means shown are based on subjects who contributed to all four cells of the analysis (four subjects did not). A two-way repeated measures ANOVA, based on the same data set, indicated a significant effect of deck, $F(1, 38) = 6.55, p = .02$; a significant effect of trial type, $F(1, 38) = 35.28, p < .01$; and a significant interaction, $F(1, 38) = 16.78, p < .01$.

Error rates. Mean error rates were 1.73% for the low-demand deck and 2.58% for the high-demand deck, a marginally significant difference on Wilcoxon signed-rank test ($p = .054$).

Deck choice. Figure 2a shows the progression of choice rates over the course of 500 trials. Across subjects, the mean proportion of trials on which the low-demand deck was selected was 0.68 ($SD = 0.24$). Thirty-six subjects (84%) selected the low-demand deck more often than the high-demand deck, and choice rates differed significantly from chance (Wilcoxon signed-rank test, $p < .0001$). A histogram showing the distribution of single-subject choice rates appears in Figure 3a.

Impact of error commission on deck choice. Fourteen subjects committed errors at a greater rate on the low-demand deck than the high-demand deck. The mean proportion of trials on which these subjects selected the low-demand deck was 0.80, and all but one (93%) chose most often from the low-demand deck (Wilcoxon signed-rank test, $p < .01$).

Impact of awareness on deck choice. Twelve subjects denied having had any awareness during the task that the probability of task switches differed between the two decks, even in retrospect, after being informed of the difference. Specifically, these subjects answered “no” to Questions 4 and 5 in the questionnaire (see Table 1). Among these subjects, the mean proportion of trials on which the low-demand deck was chosen was 0.71. Eight chose most often from the low-demand deck (Wilcoxon signed-rank test, $p = .02$).

Discussion

The present experiment tested whether subjects would show a tendency to choose courses of action that involved fewer task switches. Reaction times and error rates verified that task-switching requirements imposed cognitive demands, and choice data revealed a clear tendency to choose the low-demand alternative.

Results appear consistent with a law of least mental effort, the idea that, all else being equal, actions tend to be selected to minimize cognitive demand. We can rule out three alternative explanations. First, participants favored the low-demand deck despite believing they would perform the task for a fixed time period; this suggests the bias does not reflect a strategic attempt to reduce the length of the testing session. Second, the bias was evident among participants who committed a higher proportion of errors on the low-demand deck, countering the possibility that the observed bias reflects error avoidance. Third, the choice asymmetry was present among participants who denied any awareness of a difference between the decks. This makes it unlikely that choice behavior depended on participants’ inferences about the experimenters’ expectations or other demand characteristics.

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What was it like performing the task?</td>
</tr>
<tr>
<td>2</td>
<td>How did you choose between decks?</td>
</tr>
<tr>
<td>3</td>
<td>Did you develop a preference for one of the decks?</td>
</tr>
<tr>
<td>4</td>
<td>Was there any difference between the decks?</td>
</tr>
<tr>
<td>5</td>
<td>For some participants, one of the two decks had a tendency to switch</td>
</tr>
<tr>
<td></td>
<td>between colors more often while the other deck tended to repeat the</td>
</tr>
<tr>
<td></td>
<td>same color. Did it seem like this was the case for you?</td>
</tr>
<tr>
<td></td>
<td>If so, which deck tended to switch more often (left or right)?</td>
</tr>
<tr>
<td>6</td>
<td>If you answered yes to the previous question (indicating that one of</td>
</tr>
<tr>
<td></td>
<td>the decks seemed to switch between colors more often), was this</td>
</tr>
<tr>
<td></td>
<td>something you became EXPLICITLY aware of DURING THE EXPERIMENT, or</td>
</tr>
<tr>
<td></td>
<td>something that you realized only in retrospect?</td>
</tr>
</tbody>
</table>

Note. This questionnaire was administered following the demand selection task to assess each participant’s overt awareness of the demand manipulation.
The results from Experiment 1 leave open at least one further alternative explanation for the observed choice bias. In the experiment, the color of the numeral appearing on each trial depended on the previous trial's color, regardless of which deck was selected. If a participant happened to prefer either the magnitude task or the parity task, this property of the paradigm allowed them to maximize the number of trials involving that task. Specifically, participants could have selected the low-demand deck to obtain their preferred task repeatedly, and whenever the task switched, they could have moved briefly to the high-demand deck to recover their preferred task. This “task-seeking” strategy would result in a higher proportion of selections from the low-demand deck. We ran a small follow-up experiment with eight new participants to rule out this possibility. The procedure was the same, except that when a deck was chosen, the task (numeral color) depended on the last card chosen from that deck, not necessarily the immediately previous trial. With the task-seeking strategy unavailable, participants still selected the low-demand deck at a rate greater than chance ($M = 0.78$, signed-rank $p < .01$), replicating the main finding of Experiment 1.

Experiment 2

The results of Experiment 1 comport well with a tendency to avoid lines of action associated with high levels of cognitive demand. Experiment 2 was conducted to evaluate the generality of the effect. If demand avoidance is a ubiquitous characteristic of behavior, then it should occur under demand manipulations different from those used in our first experiments. Nor should it be dependent on the mechanics of the choice situation involved in

![Figure 2](image1.png)

Figure 2. Ten-trial running average showing the proportion of choices from the low-demand alternative, across the span of the session, in Experiments 1 (a) and 2 (b). Time courses begin at Trial 10, the first point for which the running average exists.

The results from Experiment 1 leave open at least one further alternative explanation for the observed choice bias. In the experiment, the color of the numeral appearing on each trial depended on the previous trial’s color, regardless of which deck was selected. If a participant happened to prefer either the magnitude task or the parity task, this property of the paradigm allowed them to maximize the number of trials involving that task. Specifically, participants could have selected the low-demand deck to obtain their preferred task repeatedly, and whenever the task switched, they could have moved briefly to the high-demand deck to recover their preferred task. This “task-seeking” strategy would result in a higher proportion of selections from the low-demand deck. We ran a small follow-up experiment with eight new participants to rule out this possibility. The procedure was the same, except that when a deck was chosen, the task (numeral color) depended on the last card chosen from that deck, not necessarily the immediately previous trial. With the task-seeking strategy unavailable, participants still selected the low-demand deck at a rate greater than chance ($M = 0.78$, signed-rank $p < .01$), replicating the main finding of Experiment 1.

Experiment 2

The results of Experiment 1 comport well with a tendency to avoid lines of action associated with high levels of cognitive demand. Experiment 2 was conducted to evaluate the generality of the effect. If demand avoidance is a ubiquitous characteristic of behavior, then it should occur under demand manipulations different from those used in our first experiments. Nor should it be dependent on the mechanics of the choice situation involved in

![Figure 3](image2.png)

Figure 3. a. Distribution of individual subjects’ low-demand selection rates across Experiments 1 and 2 ($n = 67$). b. Distribution of low-demand selection rates across Experiments 3, 4, and 5 ($n = 72$), in which each subject faced multiple pairs of choice cues. Experiment 3 includes two groups of subjects. When testing involved multiple runs, no subject showed an extreme choice bias in favor of a higher demand alternative.
those experiments. To test this, Experiment 2 used a DST involving a new type of demanding task embedded in a new type of choice environment. This experiment used a modified version of the A-X continuous performance task (Servan-Schreiber, Cohen, & Steingard, 1996). In this task, responses to target stimuli are dependent on the context established by a preceding cue. Frequent changes of context were assumed to introduce demands on executive functions including working memory updating and controlled response selection (Barch et al., 1997). We thus expected subjects to avoid choices associated with frequent contextual shifts.

Multiple features distinguished the two choice cues in Experiment 1: location (left vs. right), appearance (green vs. orange), and associated response (left vs. right key press). Here, the two alternatives were distinguished only by appearance, varying from trial to trial both in location and in the physical responses they required. Replication of the demand avoidance bias in such a context would provide evidence that people avoid high-demand courses of action systematically rather than, for instance, merely growing less likely to repeat their last motor response when the task is more demanding.

Method

Participants. Twenty-four members of the Princeton University community participated (14 female, 10 male; ages 18–40 years).

Materials and procedure. The experiment was programmed using E-Prime (Psychology Software Tools). Each task trial consisted of two successively shown letters (see Figure 1b). The first was a cue, A or B. The second was a probe, X or Y. Subjects make a left or right key press to each probe in the following manner: Cue A established the mapping X-left, Y-right; Cue B established the opposite mapping. Subjects made task responses with their left hand. The cue was shown for 250 ms and was followed by a 750-ms blank interval, after which the probe appeared and remained until a response was made. Trials were separated by a 500-ms response-cue interval.

The task was divided into six-trial blocks. At the beginning of each block, participants used a mouse to select one of two choice alternatives. The two alternatives were pictured as two differently patterned pool balls (one striped, one solid colored). Stimuli for six task trials were then displayed in a circular window on the chosen ball.

The critical manipulation of cognitive demand involved the sequence of cue letters within each six-trial block. Selecting the high-demand alternative resulted in a cue sequence of the form AAABBB or BBABAB, requiring five shifts of context (with an X or Y probe following each cue). The low-demand alternative always showed a cue sequence of the form AAABBB or BBABAB, requiring only a single contextual shift. The assignment of demand levels to the pictured choice stimuli remained fixed throughout the session for individual subjects and was counterbalanced across subjects.

The two choice alternatives always appeared along the perimeter of an imaginary circle separated by an angular distance of 45 degrees. Their positions were randomly reset for every block. The mouse cursor always began in the center of the screen, equidistant from the two alternatives.

The session began with a preliminary task intended to familiarize subjects with the choice setup. For 100 trials, the response options appeared in randomized locations while an explicit cue at the center instructed subjects to click on either the “striped” or “solid” ball (with trials evenly divided between the two).

Subjects were then introduced to the A-X task and performed 20 trials of practice (which were repeated if necessary). Here and throughout, errors in the task produced a brief warning message (“Incorrect response”). Subjects then performed 65 trials of the A-X task in isolation to gain additional familiarity with it. Finally, subjects performed seven runs of the choice task. Each run lasted a timed duration of 5 min. Subjects were instructed that they should do their best to respond accurately and work steadily for the entire time period. Instructions also stated that subjects could feel free to choose one ball more often than the other if they wished.

Subjects worked at their own pace, as there was no response deadline either for choice responses or probe responses. Fixed-duration runs removed any incentive to choose the low-demand alternative as a means of shortening the experiment.

Analysis. The proportion of blocks in which the low-demand alternative was selected was computed for each subject and tested against 0.50 in a Wilcoxon signed-rank test. The trajectory of demand selection over time was evaluated by computing the mean proportion of choices from the low-demand deck in each of the seven experimental runs and testing the effect of run number on choice rate in a one-way repeated-measures ANOVA. A further analysis, focusing on the effect of errors on choice behavior, is described in conjunction with results.

Results

Target response accuracy and latency. The mean accuracy rate at the A-X task was 0.93 (SD = 0.06). Accuracy during high-demand blocks was 0.90 (SD = 0.08), whereas accuracy during low-demand blocks was 0.95 (SD = 0.05), and these rates were significantly different, t(23) = 5.49, p < .01.

The average median RT for task-repetition trials in low-demand blocks (i.e., Trials 2, 3, 5, and 6 of low-demand blocks) was 506 ms (SD = 122 ms), which was significantly faster than task switch trials on the low-demand option (i.e., Trial 4; M = 571 ms, SD = 117 ms), t(23) = 4.10, p < .01. Task-switch trials in high-demand blocks (i.e., Trials 2–6) were slower still (M = 702 ms, SD = 228 ms), t(23) = 3.26, p < .01.

Choice performance. Subjects completed a mean of 125.5 task blocks over the course of the experiment (SD = 10.0; range = 106 to 142). Each block began with a choice between the high- and low-demand alternatives. The low-demand option was selected at a mean rate of 0.64 (SD = 0.27). A Wilcoxon signed-rank test found this proportion to differ significantly from chance (p = .03). A histogram showing the distribution of single-subject choice rates appears in Figure 3a.

Examination of choice rate across runs revealed a monotonic trend. No bias was evident in the first run, but a strong bias developed by run three and persisted until the end of the session. A repeated-measures ANOVA confirmed a significant effect of experimental run on choice rate, F(6, 138) = 3.26, p < .01. The choice rate as a function of trial number for the first 106 trials (the minimum completed by any subject) is shown in Figure 2b.
Impact of errors. A substantial proportion of subjects (12 of 24) made an error during the first task block. Only 2 of 24 subjects made more errors on the low-demand deck than on the high-demand deck overall, making it infeasible to test for a bias in just this subset, as in Experiment 1. However, data from the A-X task did support an analysis probing for local effects of errors on subsequent choices. We examined whether the occurrence of an error while responding to one choice cue, either high-demand or low-demand, affected the likelihood that the same cue would be selected again in the subsequent block. A straightforward error-avoidance account would predict that committing an error on one option should reduce its attractiveness.

On any given block, participants were more likely to repeat their immediately preceding choice than to change it, repeating at a mean rate of 0.73 (SD = 0.24). To assess the influence of errors, we coded individual blocks as correct if all six trials were performed accurately, or as error-containing if one or more errors occurred. The mean proportion of error-containing blocks was 0.30 (SD = 0.20). The probabilities of choice repetition after error-free and error-containing blocks, respectively, were 0.73 and 0.72; these two values did not differ (signed-rank test, p = .51) and were strongly correlated across subjects (r = .93, p < .01). This correlation suggests that subjects varied in the rates with which they repeated versus alternated the two choice alternatives, but there is no evidence that recent error commission affected choices.

Discussion

The present experiment replicated the basic findings of Experiment 1, extending them to a new demand-manipulation and choice paradigm. The results support the generality of the demand-avoidance principle. A further test of generality is reported in Experiment 4 below. Presently, we turn to a not-yet-discussed aspect of the results of Experiments 1 and 2, namely the variability in observed demand-avoidance tendencies across participants.

Experiment 3

Individual subject data from Experiments 1 and 2, shown in Figure 1a, made it appear that some participants, albeit a small minority, were biased toward high cognitive demand, rather than away from it, as a law of least mental effort would require. One possible explanation is that these individuals made their choices by focusing on dimensions other than demand, such as the location and appearance of the choice cues. Indeed, in early tests of the law of less (physical) work, arbitrary position-based preferences were found to compete with rats’ avoidance of physical effort (McCulloch, 1934). In our experiments, this gives rise to the prediction that reducing the influence of arbitrary cue-related preferences should reduce the frequency of pronounced biases toward high demand.

Experiment 3 set out to test this prediction. It employed the same logic as the previous studies, presenting participants with two choice cues that were associated with different levels of demand. In addition, however, testing was divided into multiple runs, with the appearance and location of the choice cues changing from run to run. Individuals minimizing cognitive demand would be expected to show a consistent bias toward the low-demand alternative across runs. Cue- or position-related preferences, in contrast, would not be expected to favor either the high-demand or low-demand alternative consistently.

Method

Participants. Twelve members of the Princeton University community participated in a 30-min session (ages 18–22 years; 7 women, 5 men). Analyses also include a second group of participants (referred to as Group 2), who completed a similar testing session in connection with a neuroimaging experiment. Group 2 consisted of 25 individuals (ages 18–30 years; 14 women, 11 men). Although neuroimaging results will be described in full elsewhere, data from the behavioral segments of these studies are reported here to underscore the reproducibility of the present findings. Total N for the expanded sample equaled 37.

Materials and procedure. Experiment 3 used the same magnitude/parity judgment task as Experiment 1. Each subject was presented with eight separate pairs of choice cues over the course of one session. Cues appeared as abstract color patches (see Figure 1c). Subjects used the mouse to click on a cue, causing it to reveal a colored number. They then responded to the number by pressing one of two keys with their left hand.

The experiment was divided into eight runs, each featuring a visually different pair of choice cues. There were 75 trials in each run (600 in the entire experiment). Each run featured one high-demand cue, on which numerals switched colors relative to the previous trial with a probability of 0.9, and one low-demand cue, which switched colors with a probability of 0.1.

The position of the choice cues remained fixed within each run but changed from run to run, always appearing along the perimeter of an imaginary circle separated by an angular distance of 45 degrees. The mouse cursor was positioned midway between the two patches at the beginning of each choice.

For participants in Group 2, the task was programmed using the Psychophysics Toolbox extensions for Matlab (Brainard, 1997; Pelli, 1997). These participants completed the task in a behavioral testing room following approximately 90 min of other testing. The earlier testing included performance of magnitude/parity task switching but had not allowed participants to express demand-based preferences, nor had it involved the choice cues used in the DST. The demand selection session itself was equivalent to that described above, except that each of the eight runs consisted of 60 trials (there were thus 480 trials in total).

Analysis. To test for a behavioral bias against cognitive demand, we computed each subject’s proportion of low-demand selections across all trials. Internal consistency was assessed by calculating Cronbach’s α, treating the eight runs of the DST as subtests. Additional tests, described below, were conducted to compare the distribution of choice rates across Experiment 1–2 with that in Experiment 3.

Results

Task performance. Mean accuracy of number judgments was 0.95 (0.06) for the low-demand alternative and 0.94 (0.07) for the high-demand alternative, and the difference between these rates was significant (signed-rank, p = .01). Target key-press RTs for task-switch and task-repetition trials within each demand condition are shown in Table 1. Among the 36 of 37 subjects contributing
data to all four cells, a two-way repeated-measures ANOVA revealed a significant main effect of the alternative chosen, high-demand versus low-demand, $F(1, 35) = 21.59, p < .01$, a main effect of task switch versus repetition, $F(1, 35) = 74.44, p < .01$, and a significant interaction between the two, $F(1, 35) = 19.73, p < .01$.

Demand selection. The mean rate of low-demand selections was $0.67 (SD = 0.16)$ in Group 1 and $0.61 (SD = 0.17)$ in Group 2; rates in both groups differed significantly from 0.50 (Wilcoxon signed-rank $p < .01$ in each case). Figure 3b shows the distribution of total choice rates for each group. It reveals that individual subjects’ responses ranged mainly from indifference to aversion toward high demand; no participants showed an extreme rate of bias in the high-demand direction.

The DST showed internal consistency in assessing the bias of individual subjects to avoid cognitive demand: Across both groups, Cronbach’s $\alpha = .85$.

The multiple-run design was intended to attenuate the impact of arbitrary cue-related preferences on total choice rates. Such preferences still may, of course, occasionally work in favor of one demand level or the other. The distribution of low-demand selection rates extended to a minimum score of 0.373. To test the visual impression that the distribution in Figure 3b lacks the lower tail of the distribution would fall into this range is therefore 0.03. This indicates that the data observed in Experiment 3 would be unlikely if the underlying distribution included a lower tail equivalent to that observed in Experiments 1 and 2.

Discussion

Experiment 3 introduced a manipulation to minimize the influence of demand-independent cue or response preferences in the DST. With this modification in place, no evidence was found that any subset of individuals exhibited a strong and systematic preference for the high-demand alternative (see Figure 3b).

Naturally, it cannot be guaranteed that no individual in a larger sample would ever exhibit a strong preference for high cognitive demand. However, the results of Experiment 3 show it to be improbable that such preferences exist in the population at the frequency suggested by Experiments 1 and 2. These results make it appear more likely that individuals who appeared to seek high cognitive demand may have been guided mainly by demand-irrelevant factors.

Experiment 4

Together, the experiments described so far provide convergent evidence for a tendency to avoid or minimize cognitive demand. In Experiment 4, we revisited the question of whether this tendency applies across different varieties of cognitive demand. Participants were asked to perform two-digit mental subtraction problems; we manipulated whether the problem required carrying a digit. It is well established that carry operations increase the computational complexity of a mental arithmetic problem (Hitch, 1978), and there is evidence that carries place demand specifically on executive processes involved in working memory (Furst & Hitch, 2000). We thus hypothesized that participants would avoid solving problems requiring carrying, choosing instead to solve less demanding problems.

Method

Participants. Sixteen members of the Princeton University community completed the experiment (ages 18–22 years, 10 women, six men).

Materials and procedure. Participants performed a DST using the same choice interface as in Experiment 3. Instead of switching between magnitude and parity judgments, participants verified the accuracy of subtraction problems. As before, two choice cues were shown (see Figure 1c). Either cue, when selected, revealed a completed subtraction problem including the minuend (30 or greater), subtrahend (10 or greater), and difference (greater than 10). Participants were asked to press the “1” key if the solution shown was correct or the “2” key if it was wrong. Half of the problems displayed the correct answer; for the other half, the answer shown was off by a value of 1 or 2. Response accuracy feedback was provided through the appearance of a check mark (correct) or an X (incorrect) on the screen.

The two choice cues differed in the complexity of the problems they presented. The low-demand alternative showed problems in which the ones digit of the minuend was greater than the ones digit of the subtrahend, so no carry was required. For the high-demand alternative, the opposite relationship held, so the solution involved carrying a single digit. Participants completed eight runs of the task, with each run lasting for a fixed duration of 5 min.

Results

Task performance. Participants completed an average of 828.62 trials over the course of the experiment (range = 472 to 1,103). Error rates were 0.05 for low-demand trials and 0.07 for high-demand trials, and these rates differed significantly (Wilcoxon signed-rank, $p = .02$). Mean RTs were 1,207 ms for low-demand trials and 2,026 ms for high-demand trials, and these also were significantly different (Wilcoxon signed-rank, $p < .01$).

Demand selection performance. The mean low-demand selection rate was 0.73 (range = 0.50 to 0.99), and these rates differed significantly from 0.50 (Wilcoxon signed-rank, $p < .01$). Figure 3b shows the distribution of overall choice rates for the participants in Experiment 4. Again, a clear skew toward the low-demand option is evident. Examined at the individual level, seven participants (44%) showed a low-demand bias that was statistically significant in a signed-rank test across the eight DST runs. Choice rates for the remaining nine participants did not differ significantly from 0.50. Crucially, no participant showed a significant bias in the opposite of the expected direction. The DST showed high internal consistency (Cronbach’s $\alpha = .93$), suggesting that individual participants tended to show consistent degrees of bias across the eight runs.

We wished to show here, as we have previously done for the task-switching protocol, that behavioral preferences for low cognitive demand did not merely reflect avoidant reactions to error commission. To do this, we recalculated each run’s low-demand
selection rate using only choices that preceded the first error in the run. That is, we used trials during which a given pair of choice cues could not be differentiated on the basis of which had been the location of a larger number of errors. The resulting single-run proportions (eight per subject) were then averaged to produce each subject’s mean pre-error rate of low-demand selections. The number of trials contributing to this analysis ranged from one to 105 for individual runs, and an average of 7.13 to 74.25 trials per run for individual subjects ($M = 24.02$). Thus, this analysis is based on a relatively small subset of the data. Nevertheless, the low-demand selection rate for trials preceding each run’s first error commission was 0.62, which differed significantly from 0.50 (Wilcoxon signed-rank $p = .04$).

Correlations were examined between demand selection rates and parameters of behavioral performance. Low-demand selection rates were not related to low-demand error rates ($r = -.06, p = .82$) or high-demand error rates ($r = -.09, p = .73$). Low-demand selection rates were also unrelated to low-demand RT ($r = -.17, p = .52$) but showed a strong relationship to high-demand RT ($r = .70, p < .01$).

Discussion

The present results add to those of Experiment 2 in extending the law of least mental effort beyond the setting of task switching. As in earlier experiments, results indicated that demand avoidance could not be attributed entirely to a motivation to avoid errors or minimize session length.

An interesting ancillary finding was the significant correlation between high-demand RT and preference for the low-demand alternative. This must be interpreted with caution, as the direction of causality cannot be established. It might be that individuals who drew more trials from the high-demand option gained more practice at mentally carrying digits, allowing them to speed up their performance. Taken at face value, however, the correlation would suggest that those individuals who found the high-demand task to be more cognitively demanding also showed stronger avoidance, just as one would anticipate based on a law of least mental effort.

In Experiment 5, we tested this possibility more directly.

Experiment 5

Experiments 3 and 4 reduced the incidence of apparent demand-seeking behavior by varying the appearance and location of choice cues across runs of testing. Remaining variability appeared largely confined to a range between neutrality and strong demand avoidance. Furthermore, the DST showed a reasonable degree of internal consistency in measuring the demand-avoidance tendencies of individuals. Individual differences provide us with an opportunity to test further predictions of the law of least mental effort.

It has been suggested that skills (or “capital,” in the economic metaphor of Camerer & Hogarth, 1999) help determine the relationship between effort (“labor”) and level of performance (“production”). In a similar spirit, Just and Carpenter (1992) proposed that individuals might differ not only in the capacity of working memory but also in the efficiency with which that capacity is used (more generally, the efficiency of cognitive resource utilization has been a topic of longstanding interest; Navon & Gopher, 1979). Varying levels of ability might influence the amount of cognitive demand experienced by individual participants in the same task. The experience of cognitive demand, in turn, could influence avoidance behavior.

To evaluate this idea, we focused on the task-switching version of the DST used in Experiment 3. The processing costs involved with task switching can be estimated on the basis of the difference in RT between task-switch and task-repetition trials. Previous work has provided evidence that individual variability in switch cost can be attributed to a single factor even across multiple specific task contexts (Salathe, Fristoe, McGuthry, & Hambrick, 1998). Thus, it is reasonable to hypothesize that meaningful individual differences in task-switching abilities may be present within our samples of participants.

Experiment 5 tested for correlations between individual participants’ DST performance and a separately obtained estimate of RT switch cost. As noted above, it is not feasible to assess task-switching ability on the basis of performance during the DST itself, because individuals who develop a greater low-demand bias will thereby (a) obtain less practice at task switching and (b) tend to perform a single task for a longer period of time before each switch occurs. Indeed, switch costs in previous experiments tended to be larger on the low-demand deck (where switches are less frequent) than on the high-demand deck, even within participants (see Table 2). RT switch costs were therefore measured in a preliminary period of task switching, involving isolated stimuli, before the choice paradigm was introduced. If variation in demand avoidance were related to ability, then individuals showing a larger switch cost in the preliminary period would be expected to go on to show higher levels of avoidance.

Method

Participants. Nineteen members of the Princeton University community completed the experiment (ages 18–27 years; 11 women, 8 men).

Materials and procedure. This experiment employed a DST very similar to that used in Experiment 3. Participants selected one of two patterned patches on the screen (see Figure 1c), which revealed an imperative stimulus within a magnitude/parity task-switching protocol. Numbers were colored blue (indicating magnitude) or yellow (indicating parity). Participants completed eight runs of 75 trials each, with each run featuring choice cues that differed in appearance and screen position. In every run, stimuli from one choice cue switched tasks relative to the previous trial with a probability of 0.90, whereas stimuli from the other cue switched tasks with a probability of 0.10.

Small ergonomic improvements were made to the choice interface from Experiment 3. Participants selected a choice cue by simply rolling the mouse cursor over the desired cue and registered their magnitude or parity judgments by pressing one of the two mouse buttons. After each trial, the choice cues appeared dimmed, and a small cue marked a home position halfway between the two choice cues. When participants rolled the mouse cursor to the home position, choice cues appeared normally and could be selected. This change ensured that participants began each trial with the mouse cursor equidistant from the two alternatives, while remaining in full control of the cursor position.

Participants completed a preliminary block of task-switching trials before being introduced to the DST but after having received
instructions and practice in the task-switching protocol. The preliminary block contained 126 trials. On each trial, a colored number was presented in the center of the monitor against a gray background. The sequence of colors (i.e., tasks) followed an m-sequence-based order, in which half the trials repeated the previous color. Participants made a response to each number using the mouse buttons. Trials were separated by a 500-ms response-stimulus interval.

Analysis. To test for the expected bias against cognitive demand, we tested participants’ total low-demand choice rates in the DST against 0.50 using a Wilcoxon signed-rank test. To evaluate the effect of ability on preferences, we tested the correlation of total low-demand preference rates with RT switch costs from the preliminary, choice-free block.

Results

Preliminary block performance. Within the preliminary block, mean accuracy for task-switch trials was 0.95 (SD = 0.04), whereas accuracy for task-repeat trials was 0.97 (SD = 0.03). Mean switch trial RT, using only correct trials, was 1,080 ms (SD = 173 ms), whereas repeat trial RT was 725 ms (SD = 103 ms). The switch cost was computed by subtracting mean repeat trial RT from mean switch trial RT. The resulting switch costs were positive in all cases and ranged from 49 ms to 717 ms (M = 355 ms, SD = 173 ms).

DST performance. The response accuracy rate was 0.93 for the high-demand alternative and 0.95 for the low-demand alternative, and these rates differed significantly (Wilcoxon signed-rank test, p < .01). Mean RTs are shown in Table 1. RT showed a main effect of demand level, F(1, 18) = 11.94, p < .01, a main effect of task switch versus repetition, F(1, 18) = 47.00, p < .01, and a significant interaction between these factors, F(1, 18) = 5.75, p = .03.

DST choices. The average low-demand selection rate was 0.67 (range = 0.45 to 0.95), which differed significantly from 0.50 (Wilcoxon signed-rank test, p < .01). The DST again showed high internal consistency (Cronbach’s α = .91).

Figure 3b shows the distribution of total choice rates of the participants in Experiment 5. As in Experiment 3, we found that individual subjects’ responses ranged mainly from indifference to aversion toward high demand. Seven individuals showed a low-demand selection rate that reliably exceeded 0.50 in a single-subject signed-rank test across the eight DST runs. The bias did not reach significance for 12 subjects, and no subject showed a significant bias in the reverse direction.

Across-subject correlations. Choice rates during the DST showed a significant positive correlation with the switch cost estimated during the preliminary block (r = .54, p = .02). That is, as predicted, individuals who initially showed greater switch costs went on to show more extreme demand avoidance (see Figure 4). This correlation was not driven solely by a correlation between choice rate and either switch-trial RT or repeat-trial RT (rs = .34 and −.34, respectively; ps = .15 and .16, respectively). Choices also were not predicted by error rates in the preliminary block for switch trials (r = −.19, p = .44), repeat trials (r = .03, p = .91), or the difference between the two (r = −.20, p = .42).

Discussion

The principle of demand avoidance implies that individual differences in cognitive ability should correlate with differences in avoidance behavior. Individuals whose resources for controlled information processing are more heavily taxed by a given task should avoid that task relatively strongly. The results of Experiment 5 match this expectation. The results also provide further support for the generality of demand avoidance. Across Experiments 3–5, no evidence was found that any subset of individuals exhibited a systematic preference for the high-demand alternative (see Figure 3b).

Of course, differences in ability or cognitive resource availability are not the only potential source of variation in demand-avoidance behavior. In particular, such differences might stem additionally from differences in the *appraisal* of mental-effort-related costs. That is, individuals might place different amounts of value on effort, perhaps in line with personality variables, such as “need for cognition” (Cacioppo & Petty, 1982), “learned industriousness” (Eisenberger, 1992), or tolerance for mental effort (Dornic, Ekehammar, & Laaksonen, 1991). We return to this important consideration in the General Discussion.

Experiment 6A

The results reported so far square well with a tendency toward demand avoidance. An important aspect of these results is that they provide evidence against error avoidance or minimization of time on task as full explanations for avoidance behavior; instead, results are consistent with the idea that cognitive demand itself carries intrinsic costs. However, Experiments 1–5 leave open a subtler alternative hypothesis. Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) proposed that decision strategies are chosen so as to minimize the time required to achieve task objectives. In simple forced-choice decision tasks, like those employed in our Experi-
ments 1–5 (and those addressed by Bogacz et al.), this amounts to minimizing RT. Because the high-demand option in all of our experiments so far was associated with a larger mean RT, it is possible that participants’ avoidance behavior reflected a motivation to minimize RTs on individual trials, thus minimizing the time required to achieve task goals. Experiment 6A aimed to address this alternative explanation by decoupling simple RTs from the time required to accomplish central task objectives.

The experiment employed a new DST, which we refer to as the fill/clear task. The task involved a series of “games.” At the outset of each game, an 8 × 11 grid (the “board”) appeared, with a random subset of cells filled, all in either green or blue (see Figure 5). From here, the participant used two response keys to fill or clear cells (“add or remove pieces”), a few at a time, with the ultimate objective of either completely clearing or completely filling the board. Participants were free to choose, on every step in the game, between adding and subtracting pieces and between the goals of filling and clearing the board.

It is important to note that the effects of the two response keys depended on the color of the pieces in the current display, which varied randomly across steps of the task. One of the keys (say, the left) added four pieces if the color was blue but removed four pieces if the color was green. The other key (right) had the opposite pattern effects. Thus, if a participant was operating under a “fill” strategy, it would be appropriate to respond left to blue and right to green. The “clear” strategy would call for the opposite stimulus-response mapping. Note that this made it cognitively costly to switch between strategies.

This brings us to one final, crucial detail of the task. At some point during many (but not all) games, the participant’s key-press yielded a sudden, unpredictable change in the number of pieces on the board. Following such jumps, the game continued as before, with participants free as always to choose between fill and clear strategies. Our primary interest was in cases where the jump invited a change in strategy: cases where (a) the participant was filling the board and a jump yielded a relatively empty board or (b) the participant was clearing the board and a jump yielded a relatively full board. In each of these scenarios, a motive to minimize the time to goal attainment would call for a task switch following the jump. In contrast, a motive to avoid cognitive demand would call for the less time-efficient strategy of sticking with the strategy in force before the jump.

Method

Participants. Sixty-two members of the Princeton University and 22 members of the Leiden University communities (17–33 years of age; 50 women, 12 men) participated in the study. Participation in the study was compensated for with course credit or a nominal payment. All participants provided informed consent, following procedures approved by the Princeton University Institutional Review Board and the Leiden University ethics committee.

Stimuli, design, and procedures. The experiment was computer-based and programmed using the Psychophysics Toolbox extensions for Matlab (Brainard, 1997; Pelli, 1997). The protocol alternated between two tasks: the fill/clear task and a filler task involving trustworthiness judgments on face stimuli.

In the fill/clear task, the number of pieces at the outset of each game was always a multiple of four but was otherwise selected randomly without replacement. Participants responded using the F and J keys, with key-effect mappings (as characterized above) counterbalanced across subjects. Except for when jumps occurred, each response either added or subtracted four pieces, at randomly selected locations. The color of the pieces in the display (blue or green) was selected randomly following each response. The task was self-paced. When a board was successfully filled or cleared, the words “You win!” were briefly displayed.

Jumps in the state of the board, accompanied by a brief tone, occurred (only once) in a randomly selected 76% of games. On these trials, the timing of the jump was established probabilistically: The chance of a jump after a key press, given that no jump had yet occurred, was established as:

\[
p(\text{jump}|n, \text{strategy}) = \begin{cases}
\frac{4}{88-n} & \text{if strategy = fill} \\
\frac{4}{n} & \text{if strategy = clear}
\end{cases}
\]

where \(n\) is the number of pieces before the jump, and \(\text{strategy}\) was inferred from the participant’s last response prior to the jump. This means that at each step of a game involving a jump, the jump was equally likely to occur on every subsequent step, given a fixed strategy, and that the jump was guaranteed to occur before the end of the game. The number of pieces following the jump was selected randomly, with the constraint that it could not equal the number prior to the jump or the number that would have normally resulted from the participant’s last response.

Upon completion of each fill/clear game, participants were prompted to press the two response keys simultaneously. As a result, a face from the Productive Aging Lab Face Database (Minear & Park, 2004) was presented for 3–5 s. Participants were instructed to judge verbally the trustworthiness of the face on a scale from 1 to 5, with 1 being lowest and 5 being highest. This filler task served to isolate rounds of the fill/clear task, minimizing carryover of strategy from one round to the next.

![Figure 5](https://example.com/figure5.png) Sequence of events in the fill/clear task. At the outset of each game, an 8 × 11 board appeared, with a random subset of pieces filled in either green or blue. Participants filled or cleared pieces, with the ultimate objective of either completely clearing or completely filling the board. In the current example, the participant presses the right key to fill four pieces at the outset of the game. As the color changes after this response, the participant presses the left key to fill four subsequent pieces. Next, a jump occurs and only four pieces remain on the board. The participant decides to switch strategies and clears all remaining pieces in the grid, thereby winning the game.
Midway through the study, a minor modification to the paradigm was introduced. Initially, 57 participants each played a fixed total of 110 games; the remaining participants played a variable number of games for a fixed session duration of 30 min.

Analysis. Transitions from one strategy to another in the fill/clear task were predicted to carry switch costs. To confirm this, we used a paired Student’s t test to compare mean RTs immediately following jumps between cases where responses did or did not maintain the previously established strategy.

The strategy chosen at the outset of each game was predicted to vary depending on the number of pieces present. To confirm this, we organized the 21 possible initial piece counts into seven bins (the first bin contained four, eight and 12 pieces; the second contained 16, 20, and 24 pieces; etc.). For each bin and each subject, we calculated the proportion of cases in which the fill strategy was adopted at game outset, labeling this OIP (outset fill proportion in bin i). For illustration, see the blue trace in Figure 6.

A similar approach was adopted in analyzing strategy choice following jumps. Postjump board states were binned as above, and in each bin, we calculated the proportion of cases in which the fill strategy was adopted immediately following the jump (jump fill proportion; JFP). This calculation was made separately for cases where the participant had been following the fill strategy immediately before the jump (JFPi,stay) and cases where the participant had been following the clear strategy (JFPi,switch). For illustration, see Figure 6.

To evaluate whether participants were biased against switching strategies following jumps, we compared postjump strategy selection to game-outset behavior. For each participant, we averaged OFPi, JFPi,stay, and JFPi,switch across bins, labeling the resulting means OFPi, JFPi,stay, and JFPi,switch. We then used Wilcoxon signed-ranks tests to perform pairwise comparisons, predicting first that JFPi,stay would be significantly larger than JFPi,switch and, at a more detailed level, that JFPi,stay would be significantly larger than OFPi, whereas JFPi,switch would be smaller than OFPi.

A second analysis focused on strategy choice in situations where switch avoidance was likely to delay game completion. This involved focusing on the slice of the data marked out by the gray areas in Figure 6. The highlighted points in the JFPi,stay data series derive from situations in which the fill strategy was being pursued just before a jump to a relatively empty board state. The highlighted points in the JFPi,switch data series derive from situations in which the clear strategy was being pursued just before a jump to a relatively full board state. In both of these situations, minimizing the average time to game completion required a switch to the opposite strategy. (Note that, given the presence of switch costs, it might sometimes have been more time-efficient to stay with the prejump strategy, even when the opposite strategy would allow game completion in fewer steps. That is, in such cases, the time cost of the additional steps required would be outweighed by the time saved by avoiding switch costs. Preliminary analyses indicated that, across participants, this situation would only hold in board-state Bin 4. This bin was therefore excluded from the relevant analyses.)

To quantify choice behavior in the relevant game situations, we calculated for each participant the proportion of trials on which the prejump strategy was maintained postjump, despite it being time inefficient, labeling it JIP (jump inefficiency proportion):

\[
JIP = \frac{1}{6} \sum_{i \in \{1, 2, 3\}} JFP_{i,stay} + \frac{1}{6} \sum_{i \in \{5, 6, 7\}} 1 - JFP_{i,switch}
\]

We predicted that this value would be greater than OIP (outset inefficiency proportion):

\[
OIP = \frac{1}{6} \sum_{i \in \{1, 2, 3\}} OFP_{i,stay} + \frac{1}{6} \sum_{i \in \{5, 6, 7\}} 1 - OFP_{i,switch}
\]

the proportion of cases in which the participant selected the time-inefficient strategy at game outset. This prediction was tested using a Wilcoxon signed-ranks test. The grey areas in Figure 6 mark out the portions of the choice data involved in the contrast.

Postjump strategy maintenance might reflect plausibly participants’ indifference or inattention when performing the task. To evaluate this possibility, we repeated our analyses, focusing on a subset of games involving what we termed strategy coherence. A game was judged to show strategy coherence if (a) the strategy selected at game outset was identical to the strategy selected in the prejump state and (b) the strategy selected immediately postjump matched the strategy on the final step of the game. We assumed that such consistency in strategy selection reflected a reasonable level of attention to the content of the task.

Results

Preliminary analyses confirmed that there were no statistically significant differences between the Leiden and Princeton groups, or between the group run with a fixed number of games and the group run for a fixed time in the number of responses per game, number of responses per game in which a jump occurred, switch costs, the difference between OIP and JIP, or mean RT. Subsequent analyses therefore collapsed across these divisions.

RTs. The results showed that postjump transitions from one strategy to another were associated with higher mean RTs (1,421
ms, $SD = 366\text{ ms}$) than when maintaining the established strategy ($1,014\text{ ms, }SD = 269\text{ ms}$), and this difference was statistically significant, $t(56) = 13.08, p < .0001$.

Strategy selection. The JFP_{stay} trace in Figure 6 shows the mean values for OFP, (as defined under Method). The JFP_{stay} and JFP_{switch} traces in the figure show, respectively, mean values for JFP_{stay} and JFP_{switch}. Mean values over bins were 0.53 for OFP, 0.38 for JFP_{switch}, and 0.66 for JFP_{stay}. In line with predictions, JFP_{stay} was significantly larger than JFP_{switch} ($p < .0001$), JFP_{stay} was significantly larger than OFP ($p < .0001$), and JFP_{switch} was significantly smaller than OFP ($p < .0001$). Also in line with predictions, we found that JIP ($M = 0.43$) was significantly greater than OIP ($M = 0.34, p < .001$).

In this experiment, 72% of all games displayed strategy coherence, as defined under Method. In this subset of games, an analogous pattern of results emerged. JFP_{stay} was significantly larger than JFP_{switch} ($p < .0001$), JFP_{stay} was significantly larger than OFP ($p < .0001$), and JFP_{switch} was significantly smaller than OFP ($p < .0001$); JIP ($M = 0.27$) was significantly greater than OIP ($M = 0.20, p < .05$).

Discussion

The present experiment replicated in a new setting the finding that, absent compensating incentives, people tend to avoid cognitive demand. During performance of a multistep task, participants tended to avoid switching task strategies, even when circumstances made this the fastest way to achieve task objectives. Participants were willing to delay goals to avoid a cognitively demanding task switch. This result goes some distance toward assuaging the concern that the bias observed in earlier experiments reflected simply a motivation to meet task goals as quickly as possible.

One potential concern attaching to the results of the present experiment is that the task-switch avoidance observed might simply reflect priming. That is, the adoption of a particular strategy might prime associations between stimulus color and manual responses, so that after a jump these associations would bias responding toward the existing strategy (see Hommel, 2004). Note that this would constitute a nonmotivational explanation of the avoidance effect. Thus, if priming entirely explained the results of Experiment 6A, the inclusion of incentives should not affect the magnitude of the switch-avoidance effect. On the other hand, if switch avoidance in the fill/clear task is reflective, at least in part, of a motivation to avoid cognitive demand, then introducing incentives for early task completion should reduce the effect. Experiment 6B tested this prediction.

Experiment 6B

Method

Participants. Fifty-one subjects from the Princeton University community (17–21 years of age; 39 women, 12 men) participated.

Materials and procedure. The task and procedure were the same as those in Experiment 6A, with the important exception that participants were rewarded for each game they completed. Thirty-seven people received 10¢ for each completed game, and 14 participants were rewarded with 1¢ per game.

Analysis. Choice behavior was characterized using the measures introduced in Experiment 6A. The central predictions, using the terminology established in Experiment 6A, were that the new set of rewarded participants group, when compared with the unrewarded group of Experiment 6A, would show (a) a smaller difference between JFP_{switch} and JFP_{stay}, and (b) more informatively, a smaller difference between JIP and OIP. These differences of differences were tested using Wilcoxon two-sample tests.

Results

Initial analyses revealed that there were no significant differences between the 1¢ and 10¢ groups in the number of steps per game, number of steps per game in which a jump occurred, switch costs, or the difference between JIP and OIP ($p > .31$ in all cases). In the remaining analyses, we collapsed across the two groups.

RTs. As in Experiment 6A, rewarded participants responded more slowly when switching strategies (1,446 ms; $SD = 375\text{ ms}$) than when maintaining the established strategy (1,101 ms; $SD = 311\text{ ms}$) postjump, and this difference was statistically significant, $t(50) = 11.80, p < .0001$.

Strategy selection. When the initial board was nearer to full than nearer to empty, participants chose the fill strategy more often. Mean values over bins were 0.60 for OFP, 0.45 for JFP_{switch}, and 0.55 for JFP_{stay}. Consistent with our earlier findings, JFP_{stay} was significantly larger than JFP_{switch} ($p < .0001$), JFP_{stay} was significantly larger than OFP ($p < .05$), and JFP_{switch} was significantly smaller than OFP ($p < .0001$). In contrast with Experiment 6A, JIP ($M = 0.32$) was numerically but not statistically greater than OIP ($M = 0.30, p = .65$).

In this study, 74% of all games were classified as involving strategy coherence, as defined earlier. In this subset of games, JFP_{stay} was significantly larger than JFP_{switch} ($p < .05$), JFP_{stay} was numerically but not statistically larger than OFP ($p = .80$), and JFP_{switch} was significantly smaller than OFP ($p < .05$); JIP ($M = 0.15$) was not statistically different from OIP ($M = 0.16, p = .15$).

Paid versus unpaid. Our central prediction was that the inclusion of incentives for early task completion would reduce the bias against strategy switching. This was tested by comparing JFP_{switch} and JFP_{stay} and (JIP – OIP) between paid participants and the unpaid participants from Experiment 6A. As seen in Figure 7, the difference between JFP_{switch} and JFP_{stay} was smaller in the paid group than in the unpaid group ($p < .01$). More informatively, the paid group also displayed a smaller difference between JIP and OIP compared with the unpaid group (Wilcoxon test, $p < .05$).

Overall, 73% of all games displayed strategy coherence. In this subset of games, the difference between JFP_{switch} and JFP_{stay} was also smaller in the paid group compared with the unpaid group ($p < .001$). And the paid group again displayed a smaller difference between JIP and OIP compared with the unpaid group (Wilcoxon test, $p < .01$).

Discussion

Throughout the present article, we have been considering the idea that cognitive demand weighs as a cost in the cost–benefit analyses underlying decision making. All of the experiments we have presented, including Experiment 6A, indicated that, *ceteris paribus*, people tend to avoid demand. The idea that demand
registers as a cost predicts, in addition, that avoidance should be reduced when incentives are introduced that offset the cost of cognitive effort. The present experiment confirmed this prediction in the task setting introduced in Experiment 6A. When rewards were introduced for effortful lines of action, the avoidance tendency observed in Experiment 6A was reduced.

The results of the present experiment also rule out an alternative explanation for our findings in Experiment 6A, which was that switch avoidance might have simply reflected S-R priming. If this were the entire explanation, it is unclear why the effect would be altered by an incentive manipulation.

Even though the reward of our two incentive groups differed by a factor of 10 (1e and 10e), they did not display differential behavior on the fill/clear task. Although this result was not predicted, it may reflect a ceiling effect, because in both groups, the difference between JIP and OIP was not significantly different from zero. Of course, however, despite the rather large sample sizes our experiments involved, it is not possible to rule out insufficient power. In any event, although provocative, the absence of a difference between the two reward groups does not undermine the interpretability of our more central findings.

General Discussion

The law of less work, a time-honored principle in research on decision making, has been assumed widely to apply to mental effort. It has frequently been asserted that, all things being equal, people tend to avoid situations carrying a high demand for effortful cognitive processing. To our knowledge, no attempt has been made previously to test this assumption in a controlled and systematic fashion. We have presented results from six experiments, which collectively appear to support a law of least mental effort. Participants in each experiment chose between two actions associated with different subsequent cognitive demands. In each case, participants as a group displayed a clear bias toward the less demanding option. Our first experiment provided evidence that the bias did not arise simply from a strategy of minimizing errors or session length, nor did it depend upon an ability to describe how the two options differed, minimizing the likelihood that demand characteristics lay behind it. Experiment 2 and 4 supported the generality of the effect by detecting it in different task paradigms, tapping executive functions in other ways. Experiments 3 and 5 addressed the meaningfulness of variability in individual subjects’ demand selection performance. Experiment 3 also found that the frequency of apparent preferences for high demand was reduced by a method designed to mitigate the contribution of arbitrary cue or position-based preferences, a finding replicated by Experiments 4 and 5. In addition, Experiment 5 found that cognitive demand avoidance varies inversely with task-relevant ability. Experiment 6A ruled out that behavior observed in our experiments reflected a drive to reach task objectives as quickly as possible. Experiment 6B showed that the cost of mental effort could be compensated for by monetary reward.

All in all, the present findings seem to provide convergent evidence for a bias against responses tied to requirements for cognitively demanding executive processing.

Relation to Previous Behavioral Research

As reviewed in the introduction, a wide variety of studies, on topics ranging from arithmetic to judgment and decision making, have recognized the potential explanatory relevance of a tendency to avoid high cognitive demand. The present results provide independent support for the existence of such a tendency, lending force to its explanatory role in such earlier work. Previous discussions (e.g., MacLeod et al., 1978; Nieuwenhuis & Monsell, 2002; Payne et al., 1993; Wilcox, 1993; Yeung & Monsell, 2003) have considered ways in which demand avoidance might impact decisions when only a single task is available to be performed. Decision making in such situations concerns which strategy to apply and which resources to devote to the task at hand (Navon & Gopher, 1979).

The concept of effort minimization has been particularly influential in the field of judgment and decision making. Several investigators have noted that if mental effort carries internal costs, decision makers might find it subjectively optimal to use simplifying heuristics rather than more accurate procedures (Hauser & Wernerfelt, 1990; Payne et al., 1988, 1993; Shah & Oppenheimer, 2008; Shugan, 1980; Smith & Walker, 1993; Wilcox, 1993). In this way, externally suboptimal behaviors could arise from a rational evaluation of costs and benefits. For example, effort minimization might be among the reasons why decision makers adopt noncompensatory strategies for aggregating evidence (Bröder & Schiffer, 2003; Payne et al., 1988) or rule out alternatives without fully evaluating them (Hauser & Wernerfelt, 1990).
The present work provides the most direct support to date for a key premise of the above work, namely the idea that mental effort carries subjective costs. We have shown that effort minimization influences behavioral choices; this bolsters the likelihood that effort avoidance guides covert strategy-selection decisions as well. The behavioral DST we have introduced might also be a useful tool in testing questions of specific relevance to decision making. For example, a DST could be used to test the proposal that an activity’s internal cost corresponds to the number of “elementary information processes” it comprises (Payne et al., 1988), or the idea that it is more internally costly to retrieve information from memory than from the environment (Bröder & Schiffer, 2003). In light of our findings, it may also be worth investigating the specific relevance of an effort minimization motive to cases where decisions are deferred or avoided altogether (e.g., Tversky & Shafir, 1992).

Another category of past work has focused on instances where individuals gravitate toward cognitively demanding mental activity; this category includes research on “learned industriousness” (Eisenberger, 1992) or “need for cognition” (Cacioppo, Petty, Feinstein, Blair, & Jarvis, 1996). Such work may appear to pose a basic challenge to the notion of demand avoidance. Indeed, if demand avoidance is a general principle, then one may reasonably wonder why so many people spontaneously engage in effortful recreational tasks, such as crossword puzzles or Sudoku. As it turns out, previous work on effort seeking itself provides a potential answer. As noted earlier, the standard assumption in work on learned industriousness has been that effort is aversive, but its aversiveness can be outweighed by other factors, including a rewarding sense of efficacy. The same basic perspective also appears in work on need for cognition (Cacioppo et al., 1996) and in work on social judgment, where information-processing effort has been understood as driven by a desire to arrive at correct attitudes (Petty & Wegener, 1999). Selection of high-effort courses of action need not contradict the proposition that effort weighs negatively in the underlying tradeoff. The crossword-puzzle player is like a weight lifter: Both are subject to the law of least (physical or mental) effort, but effort-related costs may be countered by other incentives.

Admitting the existence of multiple costs and benefits may appear to render the principle of demand avoidance impossible to disconfirm. However, this is not the case. The hypothesis clearly predicts that when the secondary rewards of cognitive effort are minimized (or equalized), effort avoidance should be observed in choice behavior. This is precisely the prediction tested and confirmed in the present work. Clearly, the results of cognitive effort can carry rewards. The question is whether one can explain the patterns of behavior observed in our studies and, in particular, the patterns shown in Figures 2 and 3b without appealing to the notion that cognitive demand itself is intrinsically costly or aversive. To us, the answer to this question appears to be no.

Relevant Findings From Neuroscientific Research

We have recently reported evidence that a manipulation of task-switching demand, similar to the manipulations used in the present work, indeed influences NAcc response to associated rewards (Botvinick, Huffstetler, & McGuire, 2009). Specifically, rewards appeared to be discounted by an associated demand for effort. Both high and low reward outcomes were paired with high and low levels of cognitive demand, and outcome-related NAcc activity showed a main effect of both factors. NAcc response was greater for high-reward than low-reward outcomes, consistent with past research (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000). In addition, NAcc response was reduced for higher levels of cognitive demand, suggesting that demand exerts a negative influence on neurally represented reward values. Insofar as the NAcc participates in value-based learning, demand-based modulations of reward appraisal might support learned avoidance of cognitive demand, such as we have documented in the present behavioral experiments. Anticipatory activation of avoidance mechanisms is one possible explanation for elevated skin-conductance responses observed just before the selection of a high-demand alternative (Botvinick & Rosen, 2009).

Given that both behavior and NAcc response appear to be influenced by a signal of demand-related cost, it would be useful to understand the neural dynamics from which this cost first originates. One possibility, in principle, is that demand-related costs could arise from the consumption of resources throughout the brain (e.g., from the use of any resource pool in a multiple-capacity system of working memory; Reichele et al., 2000). In the present work, however, we have focused on the possibility that intrinsic costs may be specifically related to the functioning of cognitive control (Miller & Cohen, 2001). This perspective would suggest that costs originate in brain regions showing consistent involvement in situations where control is required. Two such regions are the lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC; Duncan & Owen, 2000). In the report of effort discounting in NAcc, Botvinick et al. (2009) noted that reward-related activity in NAcc was negatively correlated with task-evoked activity in ACC. This correlation held across task events for individual participants, even within each externally manipulated demand level. This observation suggests that the ACC might participate in effort-related discounting of rewards, an idea that is consistent with other evidence for ACC involvement in encoding adverse outcomes (see Botvinick, 2007).

Other work has linked LPFC activity as well to the registration of intrinsic costs (J. T. McGuire & Botvinick, 2010). LPFC activity has also been seen in association with a potentially costly strategy of “proactive” cognitive control (Braver, Gray, & Burgess, 2007; Paxton, Barch, Racine, & Braver, 2008). The interplay between ACC and LPFC in driving costs remains a promising topic for future work. Already, however, evidence provides support for the general point that intrinsic costs are linked to the activity of control-relevant regions of the frontal lobes.

Questions for Further Investigation

Strength of the bias. One issue for further investigation pertains to the strength of the observed bias. Even while tending to prefer the low-demand alternative, subjects typically sampled both alternatives throughout the experiment. Even in Experiments 3–5, in which the bias was more uniform, its average strength did not
approach 100%. Furthermore, data suggested that individual subjects maintained relatively consistent degrees of bias across the session. Various explanations might be considered, ranging from the relatively uninteresting possibility that subjects interpreted the instructions to mean that they should continue to choose from both decks, to the more interesting possibilities that subjects’ sampling behavior reflected information seeking (Tversky & Edwards, 1966), a desire for variety or change (McAlister & Pessamiet, 1982), or a version of probability matching (Vulkan, 2000).

Although the origins of the observed choice variability are an important target for further investigation, it is important to note that the presence of that variability does not undermine the interpretability of our results. Obviously, the law of least mental effort, in line with the law of less work before it, does not imply that human decision makers should categorically and uniformly avoid cognitive demand under any and all circumstances (indeed, studies of physical effort avoidance have almost universally reported graded rather than categorical effects; see, e.g., Solomon, 1948). Rather, the law of least mental effort stipulates that anticipated cognitive demand weighs as a cost in the cost–benefit analyses that underlie decision making. To the extent that decision making also involves other factors orthogonal to demand (e.g., a desire for novelty or change), and to the extent that decisions are stochastically related to the outcome of cost–benefit analyses (as is the case in many models of human and animal decision making), effort avoidance can be expected to assume a graded rather than categorical form. Once again, the key question concerning the present work is whether the pattern of results obtained (e.g., the data shown in Figures 2 and 3b) can be explained without appealing to the notion that cognitive demand weighs as a cost in decision making.

Evaluation of demand. A second goal for further work is to examine which specific aspects of the situations imposed in the present experiments are most directly responsible for the observed pattern of avoidance. We have provided evidence that demand avoidance cannot be accounted for entirely in terms of error avoidance or maximization of reward rates. The same basic pattern of avoidance was also obtained across a variety of task settings, suggesting that the critical aspect of information processing is relatively generic, rather than something tied specifically to, say, demands for task switching. We have suggested that the critical factor in demand evaluation may be the degree of executive control required for task performance. However, executive functions are notoriously complex and multifaceted, and a finer grained account, specifying which aspects of control function are most relevant for demand evaluation and avoidance would be desirable. One possibility is that avoidance is driven by the need to encode and maintain a new task set (Rogers & Monsell, 1995) or other context information (see, e.g., O’Reilly, Braver, & Cohen, 1999) into working memory. Another possibility is that costs arise directly from the exertion of top-down control (e.g., Yeung & Monsell, 2003), which may involve processes that serve to overcome interference from recently active tasks (Wylie & Allport, 2000) and prepotent response tendencies (Miller & Cohen, 2001). A third possibility is that costs are associated with even more general aspects of demanding task performance, such as internal signals representing cognitive conflict (Botvinick, 2007). As noted above, we have begun to pursue neuroimaging work aimed at disentangling some of these possibilities (Botvinick et al., 2009; J. T. McGuire & Botvinick, 2010).

Another inviting challenge for further research would be to understand the relationship between situations that impose demand-related costs and those that bring about self-regulatory depletion (Muraven & Baumeister, 2000). Demanding mental activities such as emotion regulation have been shown to reduce people’s later cognitive performance. Even the basic mental act of making a decision among alternatives has been argued to deplete cognitive resources (Vohs et al., 2008). If the demanding tasks that people tend to avoid are the same tasks that also deplete their cognitive resources, then resource preservation might provide a normative account for the demand avoidance bias we have observed.

The above questions and others might be productively addressed through examination of individual differences in the strength of the demand avoidance bias. If a procedure such as that implemented in Experiment 3 were found to be reliable across time (and/or across multiple types of demanding tasks), then perhaps it could provide a stable estimate of an individual’s position on a continuum from indifference to strong aversion toward effort. As such, it might be administered in conjunction with other measures to test both the mechanisms and the practical implications of strong versus weaker biases against cognitive demand. Combining this paradigm with functional neuroimaging might permit assessment of the physiological correlates of bias magnitude (see J. T. McGuire & Botvinick, 2010). It would also be of interest to test the paradigm in conjunction with motivation-related individual difference scales (e.g., the BIS/BAS; Carver & White, 1994), personality indices, clinical phenomenology (Cohen, Weingartner, Smallberg, Pickar, & Murphy, 1982), or applied behavioral correlates.

References

DECISION MAKING AND COGNITIVE DEMAND

