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Such flexibility is thought to optimize the tradeoff (Ritz et 
al. 2022; Shenhav et al. 2013) between potential gains, such 
as reward (Botvinick and Braver 2015), goal achievement 
(Devine and Otto 2022; Devine et al. 2024), opportunity 
costs (Otto and Daw 2019), and potential costs such as cog-
nitive effort (Kool and Botvinick 2018; Kool et al. 2010; 
Shenhav et al. 2017; Westbrook et al. 2013).

These factors are typically studied in isolation. For 
example, humans adjust cognitive control in response to 
demands posed by the environment. In the classic Stroop 
task (Stroop 1935), they increase their use of cognitive con-
trol to the proportion of demanding incongruent trials (e.g., 
the word GREEN printed in red; Braem et al. 2019; Gratton 
et al. 1992; Jacoby et al. 2003). Such adaptation does not 
only happen across temporal contexts (Egner 2007; Schmidt 
2013; Spinelli et al. 2022; Ullsperger et al. 2005) but also 
in response to statistical contingencies between items and 
demand (Bugg and Dey 2018; Bugg et al. 2011; Chiu et 
al. 2017; Jiang et al. 2020a). Computationally, this flexibil-
ity can be captured by the reinforcement-learning frame-
work (Jiang et al. 2014, 2015), which posits that the brain 

Introduction

Our ability for cognitive control enables us to reconfigure 
mental functions to implement effortful, non-routine, and 
goal-directed behavior (Botvinick et al. 2001; Egner 2017; 
Miller and Cohen 2001). A key feature of cognitive con-
trol is its flexibility to adapt to changing environmental and 
internal factors (Jiang et al. 2014, 2015; Monsell 2003). 
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Abstract
Cognitive control refers to a set of cognitive functions that modulate other cognitive processes to align with internal goals. 
Recent research has shown that cognitive control can flexibly adapt to internal and external factors such as reward, effort, 
and environmental demands. This suggests that learning processes track changes in these factors and drive an optimization 
process to determine how cognitive control should be applied in changing situations. In real life, multiple factors often 
simultaneously affect how cognitive control is deployed. However, previous studies mainly concern how cognitive con-
trol adjusts to changes in a single factor. Here, we investigate how cognitive control learns to adjust to two concurrently 
changing factors: statistical regularity in cognitive control demand and performance-contingent reward. We consider two 
competing hypotheses: reward promotes cognitive control to adjust to cognitive control demand, and the processing of 
reward information obstructs the adaptation to cognitive control demand. In our experiment, statistical regularity in cogni-
tive control demand is manipulated within subjects such that some stimuli require higher levels of cognitive control than 
others. Reward is manipulated across subjects. Using a computational model that captures temporal changes in cognitive 
control, we find that in the absence of reward, participants can adjust to different levels of cognitive control demand. 
Importantly, when performance-contingent reward is available, participants fail to adapt to changes in cognitive control 
demand. The findings support the hypothesis that reward blocks the learning of cognitive control.
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learns to predict future demand based on a running average 
of experienced congruency, and adjusts cognitive control 
accordingly.

Cognitive control also flexibly responds to available 
reward, with evidence showing that performance-contin-
gent reward increases accuracy and reduces response times 
by enhancing attentional engagement and cognitive control 
(Balleine and Dickinson 1998; Botvinick and Braver 2015; 
Chaillou et al. 2017; Chiew and Braver 2014; Fröber and 
Dreisbach 2014).

In real life, cognitive control needs to flexibly adapt to 
a host of factors, including reward and predictable statisti-
cal structures, simultaneously. For example, rewards may 
be given for performing a challenging task that affords the 
learning of cognitive control demand. Recent work suggests 
that such rewards may bias cognitive control strategies by 
promoting proactive control but at the cost of decreased 
flexibility (Hefer and Dreisbach 2016, 2017, 2020) or 
increasing reliance on congruent distractors (Fröber and 
Lerche 2023). However, little is known about how these 
factors jointly affect flexible cognitive control, and more 
specifically, the ability to update learned control settings in 
response to changing environmental demands.

We consider two hypotheses of how cognitive control 
simultaneously adapts to changes in performance-related 
incentives and statistical contingencies predicting the 
demand for cognitive control. On the one hand, perfor-
mance-contingent rewards may increase the motivation to 
tailor the attentional state to the structure of cognitive con-
trol demand. On the other hand, the increased motivation 
to engage cognitive control triggered by reward may inter-
fere with the learning of updated demand contingencies. 
For example, because both reward and learning of statis-
tical contingency produce prediction errors (PEs, the dis-
crepancy between the predicted and actual outcome), these 
may interfere and lead to reduced learning of statistical 
contingency in the presence of reward. Moreover, structure 
learning has been characterized as carrying a control cost 
(Collins 2017), thus increased cognitive control on a focal 
task may reduce availability for control applied to updating 
statistical structure.

To adjudicate between these hypotheses, we manipulated 
the statistical structure of cognitive control demands by 
changing the item-specific proportion congruence (ISPC) 
in a picture-word Stroop task. In an initial ‘Inducer’ phase 
of the experiment, certain stimuli mostly appeared in con-
gruent trials (i.e., having low cognitive control demand), 
whereas others mostly appeared in incongruent trials (i.e., 
having high cognitive control demand). Humans are sen-
sitive to these differences between trial types, adopting a 
more focused attentional state for items that are mostly 
incongruent and a more relaxed one for items that are mostly 

congruent (Bugg and Crump 2012; Bugg and Dey 2018; 
Bugg et al. 2011; Crump et al. 2006; Logan and Zbrodoff 
1979; Suh and Bugg 2021). In a second, Diagnostic, phase 
this statistical structure was altered, with all items appear-
ing with 50% percent congruence. If participants are sen-
sitive to this change in the statistical structure of the task, 
item-specific cognitive control settings should regress from 
their previously focused and relaxed states to identical and 
intermediate states for all stimuli. To test whether reward 
and structure learning interact, one group of participants 
received performance-contingent reward in the Diagnostic 
phase, whereas the other group did not. We analyzed the 
data using conventional analyses of error rates and reac-
tion time (RT) data and computational modeling using a 
reinforcement-learning framework (Chiu et al. 2017; Sut-
ton and Barto 2018). To preview the results, we find that 
the presence of performance-contingent reward reduces the 
learning of the ISPC, thus supporting the hypothesis that 
reward interferes with the learning of statistical contingency 
of cognitive control. To our knowledge, this work provides 
the first evidence of the interaction between reward and the 
learning of cognitive control demand in driving adaptive 
behavior.

Method

Participants

No-reward condition. One hundred and twenty-nine par-
ticipants from Washington University in St. Louis provided 
informed consent and earned class credit for participation. 
Twenty-one participants were removed for not meeting the 
accuracy threshold of 80%, resulting in a final sample of 108 
participants (Age M = 19.4, SD = 1.09, 83 female, 23 male, 
2 preferred not to answer). All procedures were approved 
by Washington University in St. Louis Institutional Review 
Board.

Reward condition. One hundred and twenty-two partici-
pants were recruited on Amazon Mechanical Turk to par-
ticipate in the experiment and provided informed consent. 
Six participants were removed for not meeting the accuracy 
threshold of 80%, resulting in a final sample of 116 partici-
pants (Age M = 40.66, SD = 11.85, 49 female, 67 male). All 
procedures were approved by Washington University in St. 
Louis Institutional Review Board.

Stimuli

The stimuli used in both conditions of this study were a 
subset of a larger set of stimuli from Bugg and colleagues 
(2011). The stimulus set consisted of sixteen line drawings 
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of four birds, four cats, four fish, and four dogs, along with 
four capitalized words (BIRD, CAT, FISH, DOG). On each 
trial, a word (45px) was superimposed on a line drawing 
(215 × 161px). Both the word and the line drawing were pre-
sented at the center of the screen.

Procedure

Participants completed the Reward condition or the No-
reward condition. All procedures were held constant across 
both conditions in the Inducer phase of the experiment with 
no reward. The only difference between the two conditions 
occurred in the Diagnostic phase, namely that in the Reward 
condition participants could earn performance-contingent 
monetary reward, whereas participants in the No-reward 
condition did not.

Each trial started with the presentation of a picture-word 
Stroop stimulus until a valid response was made or until 
the response deadline of 3000ms was met (Fig. 1A). Partici-
pants were instructed to respond to the animal that appeared 
in the picture-word Stroop stimuli using previously learned 
response keys. They were also instructed to ignore the ani-
mal names superimposed on the picture. On congruent tri-
als, the identity of the picture and the word matched (e.g., a 
picture of a cat with the word CAT superimposed), whereas 
on incongruent trials, the identity of the picture and the 
word conflicted (e.g., a picture of a cat with the word DOG 
superimposed). Stimulus-response mappings (e.g., the cor-
respondence between keys on the keyboard [A, S, D, or F] 
and animal pictures [dog, fish, cat, bird]) were randomized 
across participants. Trials were separated by an inter-trial 

interval (ITI) of 1000ms. A crosshair was presented at 
the center of the screen during the ITI. The crosshair was 
replaced with a reward stimulus on trials in which partici-
pants received reward (only in the Diagnostic phase of the 
Reward condition).

After the instructions, participants first completed the 
Inducer phase, which consisted of three blocks of 240 tri-
als each for a total of 720 trials. Specifically, trials with 
two types of animal pictures were 90% congruent (mostly 
congruent, or MC condition, Fig.  1B), and trials with the 
other two types of animal pictures were congruent 10% of 
the time (mostly incongruent, or MI condition, Fig.  1B). 
The animal-congruence mappings were randomized across 
participants.

After the Inducer phase, participants in both conditions 
completed a Diagnostic phase consisting of one block of 
192 trials. In this phase, participants performed the same 
task, except that the previously learned ISPC biases were 
changed– all stimuli had the same 50% probability of appear-
ing in a congruent trial. Note that in the Diagnostic phase, 
the proportion congruence condition (MC or MI) of a stimu-
lus refers to its previous ISPC in the Inducer phase. Criti-
cally, participants in the Reward condition were instructed 
that quick and accurate responses would be probabilistically 
rewarded (Fig. 1A). However, whether a trial was rewarded 
was determined randomly. We did not use RTs for assigning 
reward to avoid congruent trials, which are typically faster 
than incongruent trials, to be more frequently rewarded than 
incongruent trials and hence introduce confounds. We do 
not expect this procedure to affect our conclusions, as our 

Fig. 1  Experimental design. 
(A) Trial sequence. Exemplar 
trials for Diagnostic and Inducer 
phases for each condition. (B) 
ISPC for each phase. ISPC is the 
same in both conditions. MI and 
MC categories are counterbal-
anced across participants
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analyses of variance (rmANOVAs) with factors of ISPC 
(MC and MI) and Trial Type (Congruent and Incongruent) 
for both error rates and RT in the Induction phase as well as 
the Diagnostic phase. Additionally, to examine the dynam-
ics of ISPC learning in the Diagnostic phase, we split the 
Diagnostic phase into two halves and repeated the afore-
mentioned rmANOVAs on each half. Finally, we examined 
whether the amount of reward obtained in the Diagnostic 
phase of the Reward condition had any effect on ISPC using 
independent sample t-tests. Here, the ISPC effect was quan-
tified as the interaction between PC and Trial Type using the 
difference in congruency effect (i.e., incongruent - congru-
ent) between MC and MI conditions (Bugg et al. 2011). All 
statistical analyses were conducted using Pingouin (version 
number: 0.3.12; Vallat (2018).

Model-based analysis

Modeling the learning of cognitive control demand. We 
used a reinforcement-learning model to more precisely 
capture the dynamics of how participants tracked the sta-
tistical structure of cognitive control demand (i.e., ISPC in 
this study) throughout the different phases. The model pre-
dicts the probability of encountering an incongruent trial for 
each animal category across the task. A model was applied 
to each category to account for the manipulation of PC at 
the animal category level. The predicted incongruency of 
the presented category was modeled and updated on each 
trial as Pi ← Pi + α (c − Pi), where Pi is the predicted 
incongruency (i.e., the predicted probability of encounter-
ing an incongruent trial) for animal category i presented 
on the current trial, and c encodes the incongruency at the 

main focus is the global effect of reward rather than the spe-
cific reward policy.

Specifically, one MI animal category and one MC animal 
category carried a 90% chance of paying out high reward 
(10 points) for accurate responses while the other two ani-
mal categories had a 10% chance of paying out low reward 
(1 point). On trials in which they received reward, partici-
pants were presented with either “+1” or “+10” points dis-
played within a hexagonal teal-colored shape during the ITI 
inter-trial interval (1000 ms). In the No-reward condition, 
the procedure of the Diagnostic phase remained identical 
to the Reward condition, with the exception that no reward 
was provided.

Before starting the main task, participants went through 
a practice phase, in which they were extensively instructed 
on (1) the correct stimulus-response mappings, and (2) the 
picture-word Stroop task. Participants practiced the main 
task for 16 trials. To prevent the practice phase from con-
founding the learning in the main task, the practice phase 
used different line drawings (two per category) than those 
used in the main task. The practice phase is explained in 
detail in the Supplemental Materials.

Conventional statistical analysis

RTs faster than 200ms or slower than 3,000ms were 
excluded, consistent with prior research using this task 
(e.g., Bugg and Dey 2018; Bugg et al. 2011). In addition, 
only correct responses were included in the analysis of RTs. 
Both exclusions eliminated less than 1% of the trials. Mean 
RTs and error rates for each phase and each condition are 
presented in Table 1. We conducted 2 × 2 repeated-measures 

Table 1  Mean Reaction Time (ms) and Error Rates
Phase Condition Item type PC DV Trial type Congruency effect

Con Inc
Induction No-reward MC RT 750 (117) 860 (159) 110 (81)

Error rate 4.4% (0.03) 7.3% (0.06) 2.9% (0.06)
MI RT 753 (129) 806 (140) 53 (60)

Error rate 4.1% (0.04) 5.9% (0.04) 1.7% (0.04)
Reward MC RT 801 (171) 914 (202) 113 (84)

Error rate 4.1% (0.04) 6.2% (0.07) 2.1% (0.06)
MI RT 816 (183) 860 (186) 44 (60)

Error rate 4.3% (0.05) 6.0% (0.05) 1.5% (0.05)
Diagnostic No-reward MC RT 770 (160) 836 (177) 66 (76)

Error rate 5.5% (0.05) 7.5% (0.07) 2.0% (0.05)
MI RT 771 (166) 813 (170) 42 (73)

Error rate 5.4% (0.06) 6.6% (0.6) 1.2% (0.05)
Reward MC RT 749 (159) 835 (189) 86 (75)

Error rate 4.5% (0.07) 6.7% (0.08) 2.2% (0.06)
MI RT 756 (159) 817 (171) 61 (62)

Error rate 4.1% (0.05) 5.8% (0.06) 1.7% (0.05)
Note. Values in parentheses indicate standard deviation. PC = proportion congruence; rt = reaction time; mc = mostly congruent; mi = mostly 
incongruent; dv = dependent variable. Note that items in the diagnostic phase were 50% congruent
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suggests that the participant learned the current ISPC and 
reacted to deviations from it by slowing their response. 
To probe the difference in ISPC learning between condi-
tions, we conducted an independent-samples t-test on β P E  
between conditions (Reward or No-reward) in the Inducer 
and Diagnostic phases separately. The same analysis was 
also performed on learning rates. Welsh’s t-test was used to 
account for unequal sample sizes between the Reward and 
No-reward conditions.

Results

Because we more mostly interested in the dynamics of 
learning captured by the reinforcement-learning model, we 
will briefly report the results of the conventional statistical 
analysis below. The full results are in Supplementary Notes 
1 and 2. We report the descriptive statistics of RTs and error 
rates across trial types, phases and conditions in Table  1. 
Their statistical results are listed in Table  2 (RTs) and 3 
(error rates). Note that the ANOVA results of the No-reward 
condition are originally reported in Bustos and colleagues 
(2024).

RT data from the Inducer phase showed that participants 
in both conditions learned the ISPC (No-reward condition: 
p <.001, ηp

2 = 0.26; Reward condition: p <.001, ηp
2 = 0.43 

(Fig. 2). They further suggested reduced learning of the new 
(unbiased) ISPC in the Reward condition compared to the 
No-reward condition during the second half of the Diagnos-
tic phase, resulting in a significant difference in the change in 
ISPC across the first and second halves of the phase between 
conditions (p =.03, ηp

2 = 0.01). We found no difference in 
the ISPC effect between the low- and high-reward items in 
the Diagnostic phase of the Reward condition. Additionally, 
we did not observe a significant correlation between the 
behavioral ISPC effect and the amount of reward accumu-
lated (r = −.04, p =.66). This allowed us to rule out the pos-
sibility of reward amount being a confounding factor of the 
results (Supplementary Note 3). In summary, reward seems 
to interfere with learning of the ISPC regularities.

To evaluate the robustness of our findings and address 
concerns about potential sample differences, we conducted 
a three-way mixed-effects model examining the effect of 
Reward, PC, Congruency and their interactions on RT in 
the diagnostic phase. This model showed no main effect of 
reward on response time (p =.72), indicating that simply 
receiving a reward did not globally alter response speed. 
Second, the model indicated that reward modulated the con-
gruency effect (p =.022). This aligns with previous findings 
(e.g., Prével et al. 2021) showing that reward can bias cog-
nitive control strategies, such as enhancing proactive con-
trol when incongruent trials are rewarded.

current trial, where congruent and incongruent trials were 
coded as 0 and 1, respectively. In other words, on each trial, 
the updated Pi( i.e., on the left side of the equation) is a 
sum of the current value of Pi( i.e., on the right side of the 
equation) and an updating term based on the current-trial 
PE, defined as (c − Pi), weighted by a learning rate α . For 
the Inducer phase, all Pis were initialized as 0.5 to reflect 
a neutral prediction of incongruency. The initial Pi of the 
Diagnostic phase was set to the final Pi of the Inducer phase 
to simulate the retention of ISPC. The model incorporates 
two learning rates ( α s), one for the Inducer phase and one 
for the Diagnostic phase.

Behavioral model fitting. To model how P ( subscripts 
are removed to indicate a vector of all trial-wise values for 
the variable) influences RT, a linear model using |PE| as 
a predictor was constructed to predict trial-wise RT (Chiu 
et al. 2017; Jiang et al. 2020a; Muhle-Karbe et al. 2018). 
The absolute value of PE is used because only the mag-
nitude but not the direction of PE is required to examine 
the strength of learning. Specifically, a larger |PE| indi-
cates more deviation of the predicted probability of incon-
gruency from the actual (in)congruency, and when used to 
guide cognitive control, will cause suboptimal processing 
and slower RT (Jiang et al. 2014, 2015). In addition to the 
model-based regressors, we included five binary predictor 
variables. The first coded for the congruency of the current 
trial, c, to account for the congruency effect, and the four 
resulting binary predictor variables coded for each of the 
four animal categories present on the current trial to account 
for potential biases that may differentially influence RTs for 
each of the animal categories. All trials were included in 
the trial-by-trial modeling of P  and |PE| , but only correct 
trials were included in the multiple linear regression pre-
dicting RT.

The learning rates are the only free parameters of this 
model. To determine the best-fitting α s, we implemented 
a standard minimization function (using the L-BFGS-B 
algorithm) that was run with 30 different randomly selected 
starting points for each participant to avoid local minima. 
For each participant, the parameter fits of the model with the 
smallest sum of squared errors (SSE) of predicted RT over 
all trials was selected. Within each phase, the learning rate 
was shared by all category-specific learning models. The 
optimization procedure also produced the regression coef-
ficient of|PE| ( β P E), which indicates how much RT scales 
with the magnitude of prediction error.

Model-based statistical analysis. Because β P E  was 
generated based on the best-fitting learning model, it quan-
tifies the strength of learning: As discussed above, a positive 
β P E  indicates that RT slows with PE magnitude and thus 
suggests the behavior is consistent with the learning model 
(Jiang et al. 2015). In other words, a positive coefficient 
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Table 2  Conventional statistical results: RT
Phase Condition Effect DOF F value P value Effect size ηp

2

Inducer No-reward Main effect of trial type (1,107) 258.53 < 0.001 0.71
Reward (1,115) 191.86 < 0.001 0.63
No-reward Main effect of ISPC (1,107) 18.85 < 0.001 0.15
Reward (1,115) 8.79 < 0.001 0.07
No-reward Trial type × ISPC interaction (1,107) 36.63 < 0.001 0.26
Reward (1,115) 87.80 < 0.001 0.43

Diagnostic No-reward Main effect of trial type (1,107) 114.37 < 0.001 0.52
Reward (1,115) 174.84 < 0.001 0.61
No-reward Main effect of ISPC (1,107) 12.15 0.146 0.02
Reward (1,115) 0.86 0.36 0.01
No-reward Trial type × ISPC interaction (1,107) 5.57 0.02 0.05
Reward (1,115) 15.75 < 0.001 0.12

Diagnostic: First half No-reward Main effect of trial type (1,107) 71.05 < 0.001 0.40
Reward (1,115) 126.51 < 0.001 0.52
No-reward Main effect of ISPC (1,107) 0.35 0.56 0.003
Reward (1,115) 0.84 0.36 0.01
No-reward Trial type × ISPC interaction (1,107) 10.54 0.002 0.09
Reward (1,115) 8.56 0.004 0.07

Diagnostic: Second half No-reward Main effect of trial type (1,107) 54.21 < 0.001 0.34
Reward (1,115) 133.8 < 0.001 0.54
No-reward Main effect of ISPC (1,107) 3.05 0.08 0.03
Reward (1,115) 0.49 0.48 0.004
No-reward Trial type × ISPC interaction (1,107) 0.03 0.86 < 0.001
Reward (1,115) 8.51 0.004 0.07

Note. Items in the diagnostic phase were 50% congruent.​​ dof = degree of freedom

Table 3  Conventional statistical results: Error rate
Phase Condition Effect DOF F value P value Effect size ηp

2

Inducer No-reward Main effect of trial type (1,107) 38.61 < 0.001 0.26
Reward (1,115) 22.28 < 0.001 0.16
No-reward Main effect of ISPC (1,107) 6.14 0.015 0.05
Reward (1,115) 0.11 0.74 < 0.001
No-reward Trial type × ISPC interaction (1,107) 4.26 0.04 0.04
Reward (1,115) 0.99 0.32 0.01

Diagnostic No-reward Main effect of trial type (1,107) 21.02 < 0.001 0.16
Reward (1,115) 28.34 < 0.001 0.20
No-reward Main effect of ISPC (1,107) 2.1 0.15 0.02
Reward (1,115) 1.71 0.74 0.01
No-reward Trial type × ISPC interaction (1,107) 1.53 0.22 0.01
Reward (1,115) 0.54 0.46 0.004

Diagnostic: First half No-reward Main effect of trial type (1,107) 16.61 < 0.001 0.13
Reward (1,115) 10.70 0.001 0.09
No-reward Main effect of ISPC (1,107) 0.35 0.55 0.003
Reward (1,115) 0.72 0.40 0.001
No-reward Trial type × ISPC interaction (1,107) 2.13 0.15 0.02
Reward (1,115) 3.15 0.08 0.03

Diagnostic: Second half No-reward Main effect of trial type (1,107) 5.14 0.03 0.06
Reward (1,115) 28.35 < 0.001 0.20
No-reward Main effect of ISPC (1,107) 2.08 0.15 0.02
Reward (1,115) 1.71 0.74 0.01
No-reward Trial type × ISPC interaction (1,107) 0.05 0.83 0.02
Reward (1,115) 0.54 0.46 0.004

Note. Items in the diagnostic phase were 50% congruent.​​ dof = degree of freedom
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Model-based results

Inducer phase. We used trial-wise model estimates of 
unsigned PE of incongruency to predict RT in a linear 
model. Previous studies have shown that trial-wise RT 
scales with PE in an ISPC design (Chiu et al. 2017; Jiang et 
al. 2020a). Replicating these findings, we found that β P E  
was significantly above zero in both conditions (No-reward 
condition: t(107) = 3.50, p < .001, d = 0.34; Reward condi-
tion: t(115) = 10.7, p < .001, d = 0.99, Fig.  3A). As a vali-
dation, we tested whether the regression weight of PE was 
correlated with the ISPC effect in RT. In both conditions, 
the behavioral ISPC effect was strongly associated with the 
regression weight of |PE|( No-reward: r =.59, p <.001, 
Reward: r =.63, p <.001).

Importantly, the average regression weight of |PE|( 
i.e., β P E) was significantly smaller in the No-reward con-
dition than the Reward condition, t(211) = -2.63, p =.01, 
d = 0.35 (No-reward: M = 54, SE = 13.90, Reward: M = 101, 
SE = 11.45), suggesting that the Reward group learned the 
ISPC better than the No-reward group. To account for this 
between-group difference, the β P E  of the Inducer phase 
was used as a baseline in the Diagnostic phase analysis 
(reported below). In addition to β P E , we also compared 
learning rates between the two conditions. To account for 

To account for potential group differences, we conducted 
an additional three-way mixed-effects model examining the 
effect of Reward, Congruency, Phase (Inducer vs. Transfer) 
and their interactions on RT (see Table 4). Since the Inducer 
phase serves as a baseline in which neither group received 
reward, this approach controlled for sample-related vari-
ability before the introduction of reward. This model 
showed a small but reliable effect indicating that the effect 
of reward on congruency differed between phases (p =.015, 
f² = 0.013). This result supports the interpretation that the 
observed effects in the Transfer phase were driven by how 
reward influenced the adaptation of control settings over 
time, rather than inherent group differences.

Briefly, the error rate data showed two patterns: (1) 
higher error rates in incongruent than congruent trials and 
(2) no significant difference in ISPC effects between the 
reward conditions, which indicates that the difference in 
ISPC effects in RT data was unlikely to be attributable to a 
speed-accuracy tradeoff.

In summary, reward seems to interfere with learning of 
the ISPC. Below, we provide support for this hypothesis 
using model-based measures that offer a more nuanced 
account of learning dynamics.

Predictor Estimate (β\beta) SE z-value p-value
Intercept 805.599 13.978 57.634 < 0.001
Reward 56.580 19.424 2.913 0.004
Congruency -59.240 2.193 -27.012 < 0.001
Phase 12.193 3.380 3.607 < 0.001
Reward × Congruency -4.016 3.048 -1.318 0.188
Reward × Phase -51.633 4.697 -10.994 < 0.001
Congruency × Phase 6.240 4.780 1.306 0.192
Reward × Congruency × Phase -16.213 6.642 -2.441 0.015

Table 4  Three-way mixed-effects 
model: Reward × Congruency × 
Phase (Inducer vs. Transfer)

 

Fig. 2  RT results. (A) RTs by trial type (congruent or incongruent) and 
proportion congruency (mostly congruent, MC, or mostly incongru-
ent, MI) in the No-reward condition for each phase. (B) RTs by trial 

type (congruent or incongruent) and proportion congruency (mostly 
congruent, MC, or mostly incongruent, MI) in the Reward condition 
for each phase
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(M = -23, SE = 13.72; t(221) = 4.19, p <.001, Fig. 3A). This 
finding suggests that the Reward condition showed reduced 
learning of the new (unbiased) ISPC compared to the No-
Reward condition. This is consistent with the split-phase RT 
analysis reported above, in which participants in the Reward 
condition were shown to carry the outdated ISPC from the 
Inducer phase throughout the second half of the Diagnostic 
phase, unlike participants in the No-reward condition.

One alternative explanation to this finding is that the sub-
jects in the Reward condition were in general worse learners 
of ISPCs. To rule out this possibility, we used the Inducer 
phase as a baseline and tested the change of β P E  from the 
Inducer to the Diagnostic phase and found that the change 
in β P E  was also significantly larger in the Reward con-
dition (M = 83, SE = 17.95) than the No-reward condition 
(M = − 0.26, SE = 0.02, t(213) = -4.39, p < .001, d = 0.58). 
This result indicates that subjects in the Reward condition 
reduced their learning of ISPC compared to those in the No-
reward condition.

the non-Gaussian distributions of learning rates a non-para-
metric test, the Mann-Whitney U test (Wilcoxon rank-sum 
test) was implemented to compare learning rates within 
the Inducer phase and revealed no significant difference 
between conditions (U = 6711, p =.34, Common-Language 
Effect Size (CLES) = 0.54; No-reward: M = 0.22, SE = 0.03, 
Reward: M = 0.17, SE = 0.03, Fig. 3B).

Diagnostic phase. Similar to the Inducer phase, we used 
β P E  as a measure of ISPC learning. In other words, as 
the learning models adapt to the new ISPC, a strong mod-
ulation of PE on RT (i.e., large β P E) indicates that par-
ticipants learned the (now unbiased) ISPC and used it to 
influence cognitive control and behavior. Conversely, a 
weak effect of β P E  indicates no learning of ISPC. Thus, 
by comparing this measure between conditions, we tested 
whether the presence of reward affects the learning of the 
new ISPC in the Diagnostic phase. An independent t-test 
showed that the β P E  in the No-reward condition (M = 59, 
SE = 14.0) was larger compared to the Reward condition 

Fig. 3  Model-based RT results. (A) Regression weights of the absolute 
value or prediction error for each condition and each phase. (B) Fit 
learning rates for each condition and phase. (C) Correlation between 
the regression weight of|PE| in the Inducer phase and in the Diagnos-

tic phase for the No-reward condition. (D) Correlation between the 
regression weight of|PE| in the Inducer phase and in the Diagnostic 
phase for the Reward condition
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phasev—when no reward was available—participants in 
both groups learned associations between stimulus features 
(here, the animals in the pictures) to guide cognitive control. 
As a result, larger Stroop effects (suggesting less cognitive 
control) were observed for items that had been MC than 
MI items, replicating the classic ISPC effect (Bugg et al. 
2011; Jacoby et al. 2003). Importantly, in the subsequent 
Diagnostic phase, where all items were now unbiased, par-
ticipants in the Reward condition showed slower learning 
of the new ISPC contingencies than those in the No-reward 
condition. Specifically, our model-based analyses revealed 
that participants in the No-reward condition demonstrated a 
significant increase in β P E  from the Inducer phase to the 
Diagnostic phase, indicating greater sensitivity to environ-
mental changes, whereas participants in the Reward condi-
tion did not show a change in β P E , indicating they did not 
update their control settings. Together, these results provide 
evidence for the interference of reward incentives on the 
updating of learned control strategies.

Although the three-way interaction between reward, PC, 
and congruency was not significant in our factorial analysis, 
this does not imply that reward did not affect ISPC learning. 
Instead, our model-based analysis of the PEs revealed that 
reward influenced ISPC adaptation dynamically rather than 
as a static interaction. Specifically, we found that reward 
reduced adaptation to the new (unbiased) ISPC compared 
to the No-reward condition. This effect was further reflected 
in learning rates: participants in the No-reward condition 
exhibited an increase from the Inducer to the Diagnostic 
phase, whereas no change was observed in the Reward 
condition.

An alternative explanation is that participants in the 
Reward condition were simply worse at learning ISPC con-
tingencies. However, we found a significant positive cross-
subject correlation between PE weights in the Inducer and 
Diagnostic phases in the Reward condition, while no such 
relationship was observed in the No-reward condition. The 
difference in correlations was statistically significant, rul-
ing out the possibility that individual differences in learn-
ing ability drove these effects. Instead, reward appeared to 
promote stability in learned control settings, leading par-
ticipants to persist in applying outdated ISPC expectations 
even when the statistical structure changed.

There are several non-exclusive accounts for why reward 
hinders the learning of new ISPC contingencies. First, in the 
Reward condition, participants are simultaneously learn-
ing the structure of reward (e.g., the RT threshold to obtain 
reward, and which items yield high reward, etc.) and the 
ISPC. Both forms of learning generate prediction error sig-
nals in overlapping neural circuits, including the striatum 
and the midbrain (Daw et al. 2011; Kim et al. 2009; Schön-
berg et al. 2007; Schultz et al. 1997) and thus may lead to 

An additional alternative hypothesis is that the subjects 
in the Reward condition are more sensitive to the biased 
ISPC in the Inducer phase (i.e., 90% and 10%) compared to 
the unbiased ISPC in the Diagnostic phase (i.e., 50%). As 
β P E  scales with the strength of ISPC learning, this hypoth-
esis would predict that subjects showing larger β P E  in the 
Inducer phase will show smaller β P E  in the Diagnostic 
phase. However, opposite to this prediction, we observed 
a significant positive cross-subject relationship of the PE 
weights between the two phases in the Reward condition 
(r =.52, p < .001, Fig. 3C). As a control analysis, we found 
that when no reward was presented, this relationship was 
absent in the No-reward condition between phases (r =.009, 
p = .93, Fig. 3D). This difference in correlations was statisti-
cally significant (z = 4.19, p <.001). Thus, these findings did 
not support the alternative explanation.

The Mann-Whitney U test comparing learning rates 
within the Diagnostic phase revealed a significant differ-
ence between conditions (U = 7802, p =.001, CLES = 0.62; 
Reward condition: M = 0.18, SE = 0.03; No-reward con-
dition: M = 0.34, SE = 0.04, Fig.  3B). The learning rate 
increased significantly in the No-reward condition from the 
Inducer phase to the Diagnostic phase t(214) = 2.53, p =.01, 
d = 0.34, but did not differ significantly between phases 
for the Reward condition, t(230) = − 0.18, p =.85, d = 0.02. 
Finally, we found that the change in learning rate between 
phases was significant between conditions, t(195) = 1.98, 
p =.049, d = 0.28 (Fig. 3B). The significant increase in the 
learning rate from the Inducer to the Diagnostic phase for 
the No-reward study further supports the notion that learn-
ing of the ISPC in the Diagnostic phase was faster in the No-
reward than the Reward condition. In summary, we observed 
slower learning of the ISPC in the Diagnostic phase in the 
Reward than in the No-reward condition, manifested in both 
PE modulation on RT and learning rates.

Discussion

Extant work probing the influence of reward on cognitive 
control has examined its contribution to performance in 
several domains including attention (Botvinick and Braver 
2015; Chiew and Braver 2014; Engelmann and Pessoa 
2014; Notebaert and Braem 2015; Yee and Braver 2018) 
and memory encoding (Adcock et al. 2006; Miendlarze-
wska et al. 2016; Murty et al. 2016; Spaniol et al. 2014; 
Wittmann et al. 2005). In the present study we aimed to 
study how cognitive control adapts to multiple external 
factors, such as reward and statistical demand regular-
ity. Using a between-subject design that manipulated the 
presence of performance-contingent reward in a variant of 
the Stroop task, our results first show that, in the Inducer 
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cognitive stability against the need for flexible adaptation. 
Notably, Hefer and Dreisbach (2017, 2020) demonstrated 
this tradeoff in the AX Continuous Performance Task (AX-
CPT). They showed that performance-contingent reward 
enhanced cue maintenance—reflecting greater cognitive 
stability—but impaired adaptation when task contingencies 
changed. This was especially evident when cue validity was 
removed, yet participants continued to rely on outdated cue-
based strategies when behavior was rewarded. This pattern 
mirrors our findings: in the diagnostic phase, despite the 
shift in ISPC structure, participants in the Reward condi-
tion continued to apply previously learned control settings. 
Although Hefer and Dreisbach did not use computational 
modeling, their results suggest that similar reward-driven 
reductions in learning rate might underlie these effects. 
Together, their work provides converging support for the 
idea that reward can foster stable control at the cost of flex-
ibility in adapting to changing task demands.

While our results may seem to be inconsistent with pre-
vious research demonstrating that performance-contingent 
reward increases proactive cognitive control (Chiew and 
Braver 2014; Fröber and Dreisbach 2014), we argue that 
both the previous and current findings reflect a similar strat-
egy under the framework of the expected value of control 
(EVC) theory (Shenhav et al. 2013). The EVC theory posits 
that cognitive control is applied to balance reward and cost 
(e.g., cognitive effort). When no reward is available, ISPC 
can be learned efficiently since effort is strategically allo-
cated where conflict is expected (e.g., when encountering 
MI items). However, when reward is contingent on perfor-
mance, cognitive effort allocation is biased towards maxi-
mizing reward rather than updating statistical regularities, 
allowing for more effort to be applied to both MC and MI 
items. As a result, it is no longer necessary to distinguish 
between MC and MI items. This is crucial in the current 
Reward condition, as reward depends on fast responses. 
Thus, performance-contingent reward will lead to two com-
patible consequences corresponding to the previous and the 
current findings. First, cognitive control can be applied pro-
actively (i.e., prior to the onset of the item). Second, the re-
learning of ISPC becomes less valuable, as there is no need 
to separate MC and MI items. This may explain why, in our 
Reward condition, participants showed greater stability in 
their control settings rather than flexibly adapting to the new 
ISPC contingencies.

The ISPC manipulation is designed to demand reactive 
cognitive control (i.e., demand cannot be predicted before 
the item is displayed). This leads to the intriguing possibility 
that this reward-congruence learning tradeoff can be differ-
ent in the case of proactive cognitive control. For example, 
in a context-specific proportion congruency task (Jiang et 
al. 2020b; King et al. 2012), the expected congruence of the 

competition and subsequent masking of the PE caused by 
the ISPC (Chiu and Egner 2019; Chiu et al. 2017). Second, 
because learning in the Reward condition involves two fac-
tors (reward and ISPC), this may carry an addcasueditional 
cognitive cost and make the learning of ISPC less effective 
(Collins 2017). Third, reward may bias attentional resources 
toward reward-related features at the expense of conflict-
driven learning (Niv 2019). It has been shown that attention 
magnifies PE in perception (Jiang et al. 2013). Similarly, 
the learning of ISPC, when not attended, may receive only 
a weak learning signal of PE, leading to reduced learning. 
Finally, because both reward and ISPC learning occur at 
the item level, they may compete within working memory, 
increasing interference and reducing the efficiency of ISPC 
learning.

Our findings contrast with those of Prével and colleagues 
(2021), who found that reward reduced the congruency 
effect when incongruent trials were selectively rewarded but 
increased the congruency effect when congruent trials were 
rewarded. Their results suggest that reward can enhance 
proactive control when it reinforces conflict adaptation 
(i.e., rewarding incongruent trials), leading to more efficient 
conflict resolution. Conversely, rewarding congruent trials 
promoted automatic responses, increasing susceptibility to 
conflict when incongruent trials appeared.

In contrast, in our study, reward increased the congru-
ency effect. This pattern is more similar to Prével and 
colleague’s (2021) “congruent reward” condition, where 
reward reinforced reliance on more automated word-read-
ing responses rather than encouraging conflict resolution. 
However, unlike this study, our reward manipulation did not 
explicitly reinforce specific trial types—instead, reward was 
probabilistic and based on overall task performance. This 
suggests that reward in our study may have stabilized exist-
ing control settings rather than promoting flexible adapta-
tion to conflict. Instead of facilitating the ability to update 
control strategies in response to changing task demands, 
reward may have reinforced a more rigid approach to con-
flict processing, amplifying interference from incongru-
ent trials. This interpretation aligns with our major finding 
that reward masks the learning of new ISPC contingencies, 
which is another manifestation of stabilized control settings. 
Just as reward hindered the ability to flexibly adjust ISPC 
learning in response to new conflict statistics, it may have 
similarly reinforced pre-existing conflict processing ten-
dencies, increasing rather than decreasing the congruency 
effect. This provides further evidence that reward can some-
times encourage stability at the cost of flexibility in cogni-
tive control (Chiu and Egner 2019; Chiu et al. 2017; Hefer 
& Dreisbach., 2017, 2020).

Our findings are also in line with prior empirical work 
documenting this tradeoff, particularly in tasks that pit 
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provides new insight into how reward modulates the stabil-
ity-flexibility tradeoff in cognitive control.
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