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Abstract

Cognitive control refers to a set of cognitive functions that modulate other cognitive processes to align with internal goals.
Recent research has shown that cognitive control can flexibly adapt to internal and external factors such as reward, effort,
and environmental demands. This suggests that learning processes track changes in these factors and drive an optimization
process to determine how cognitive control should be applied in changing situations. In real life, multiple factors often
simultaneously affect how cognitive control is deployed. However, previous studies mainly concern how cognitive con-
trol adjusts to changes in a single factor. Here, we investigate how cognitive control learns to adjust to two concurrently
changing factors: statistical regularity in cognitive control demand and performance-contingent reward. We consider two
competing hypotheses: reward promotes cognitive control to adjust to cognitive control demand, and the processing of
reward information obstructs the adaptation to cognitive control demand. In our experiment, statistical regularity in cogni-
tive control demand is manipulated within subjects such that some stimuli require higher levels of cognitive control than
others. Reward is manipulated across subjects. Using a computational model that captures temporal changes in cognitive
control, we find that in the absence of reward, participants can adjust to different levels of cognitive control demand.
Importantly, when performance-contingent reward is available, participants fail to adapt to changes in cognitive control
demand. The findings support the hypothesis that reward blocks the learning of cognitive control.

Keywords Cognitive control - Reinforcement - Item-specific proportion congruence - Motivation - Reward

Introduction

Our ability for cognitive control enables us to reconfigure
mental functions to implement effortful, non-routine, and
goal-directed behavior (Botvinick et al. 2001; Egner 2017,
Miller and Cohen 2001). A key feature of cognitive con-
trol is its flexibility to adapt to changing environmental and
internal factors (Jiang et al. 2014, 2015; Monsell 2003).
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Such flexibility is thought to optimize the tradeoff (Ritz et
al. 2022; Shenhav et al. 2013) between potential gains, such
as reward (Botvinick and Braver 2015), goal achievement
(Devine and Otto 2022; Devine et al. 2024), opportunity
costs (Otto and Daw 2019), and potential costs such as cog-
nitive effort (Kool and Botvinick 2018; Kool et al. 2010;
Shenhav et al. 2017; Westbrook et al. 2013).

These factors are typically studied in isolation. For
example, humans adjust cognitive control in response to
demands posed by the environment. In the classic Stroop
task (Stroop 1935), they increase their use of cognitive con-
trol to the proportion of demanding incongruent trials (e.g.,
the word GREEN printed in red; Braem et al. 2019; Gratton
et al. 1992; Jacoby et al. 2003). Such adaptation does not
only happen across temporal contexts (Egner 2007; Schmidt
2013; Spinelli et al. 2022; Ullsperger et al. 2005) but also
in response to statistical contingencies between items and
demand (Bugg and Dey 2018; Bugg et al. 2011; Chiu et
al. 2017; Jiang et al. 2020a). Computationally, this flexibil-
ity can be captured by the reinforcement-learning frame-
work (Jiang et al. 2014, 2015), which posits that the brain
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learns to predict future demand based on a running average
of experienced congruency, and adjusts cognitive control
accordingly.

Cognitive control also flexibly responds to available
reward, with evidence showing that performance-contin-
gent reward increases accuracy and reduces response times
by enhancing attentional engagement and cognitive control
(Balleine and Dickinson 1998; Botvinick and Braver 2015;
Chaillou et al. 2017; Chiew and Braver 2014; Frober and
Dreisbach 2014).

In real life, cognitive control needs to flexibly adapt to
a host of factors, including reward and predictable statisti-
cal structures, simultaneously. For example, rewards may
be given for performing a challenging task that affords the
learning of cognitive control demand. Recent work suggests
that such rewards may bias cognitive control strategies by
promoting proactive control but at the cost of decreased
flexibility (Hefer and Dreisbach 2016, 2017, 2020) or
increasing reliance on congruent distractors (Frober and
Lerche 2023). However, little is known about how these
factors jointly affect flexible cognitive control, and more
specifically, the ability to update learned control settings in
response to changing environmental demands.

We consider two hypotheses of how cognitive control
simultaneously adapts to changes in performance-related
incentives and statistical contingencies predicting the
demand for cognitive control. On the one hand, perfor-
mance-contingent rewards may increase the motivation to
tailor the attentional state to the structure of cognitive con-
trol demand. On the other hand, the increased motivation
to engage cognitive control triggered by reward may inter-
fere with the learning of updated demand contingencies.
For example, because both reward and learning of statis-
tical contingency produce prediction errors (PEs, the dis-
crepancy between the predicted and actual outcome), these
may interfere and lead to reduced learning of statistical
contingency in the presence of reward. Moreover, structure
learning has been characterized as carrying a control cost
(Collins 2017), thus increased cognitive control on a focal
task may reduce availability for control applied to updating
statistical structure.

To adjudicate between these hypotheses, we manipulated
the statistical structure of cognitive control demands by
changing the item-specific proportion congruence (ISPC)
in a picture-word Stroop task. In an initial ‘Inducer’ phase
of the experiment, certain stimuli mostly appeared in con-
gruent trials (i.e., having low cognitive control demand),
whereas others mostly appeared in incongruent trials (i.e.,
having high cognitive control demand). Humans are sen-
sitive to these differences between trial types, adopting a
more focused attentional state for items that are mostly
incongruent and a more relaxed one for items that are mostly
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congruent (Bugg and Crump 2012; Bugg and Dey 2018;
Bugg et al. 2011; Crump et al. 2006; Logan and Zbrodoff
1979; Suh and Bugg 2021). In a second, Diagnostic, phase
this statistical structure was altered, with all items appear-
ing with 50% percent congruence. If participants are sen-
sitive to this change in the statistical structure of the task,
item-specific cognitive control settings should regress from
their previously focused and relaxed states to identical and
intermediate states for all stimuli. To test whether reward
and structure learning interact, one group of participants
received performance-contingent reward in the Diagnostic
phase, whereas the other group did not. We analyzed the
data using conventional analyses of error rates and reac-
tion time (RT) data and computational modeling using a
reinforcement-learning framework (Chiu et al. 2017; Sut-
ton and Barto 2018). To preview the results, we find that
the presence of performance-contingent reward reduces the
learning of the ISPC, thus supporting the hypothesis that
reward interferes with the learning of statistical contingency
of cognitive control. To our knowledge, this work provides
the first evidence of the interaction between reward and the
learning of cognitive control demand in driving adaptive
behavior.

Method
Participants

No-reward condition. One hundred and twenty-nine par-
ticipants from Washington University in St. Louis provided
informed consent and earned class credit for participation.
Twenty-one participants were removed for not meeting the
accuracy threshold of 80%, resulting in a final sample of 108
participants (Age M=19.4, SD=1.09, 83 female, 23 male,
2 preferred not to answer). All procedures were approved
by Washington University in St. Louis Institutional Review
Board.

Reward condition. One hundred and twenty-two partici-
pants were recruited on Amazon Mechanical Turk to par-
ticipate in the experiment and provided informed consent.
Six participants were removed for not meeting the accuracy
threshold of 80%, resulting in a final sample of 116 partici-
pants (Age M =40.66, SD=11.85, 49 female, 67 male). All
procedures were approved by Washington University in St.
Louis Institutional Review Board.

Stimuli
The stimuli used in both conditions of this study were a

subset of a larger set of stimuli from Bugg and colleagues
(2011). The stimulus set consisted of sixteen line drawings
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of four birds, four cats, four fish, and four dogs, along with
four capitalized words (BIRD, CAT, FISH, DOG). On each
trial, a word (45px) was superimposed on a line drawing
(215 x 161px). Both the word and the line drawing were pre-
sented at the center of the screen.

Procedure

Participants completed the Reward condition or the No-
reward condition. All procedures were held constant across
both conditions in the Inducer phase of the experiment with
no reward. The only difference between the two conditions
occurred in the Diagnostic phase, namely that in the Reward
condition participants could earn performance-contingent
monetary reward, whereas participants in the No-reward
condition did not.

Each trial started with the presentation of a picture-word
Stroop stimulus until a valid response was made or until
the response deadline of 3000ms was met (Fig. 1A). Partici-
pants were instructed to respond to the animal that appeared
in the picture-word Stroop stimuli using previously learned
response keys. They were also instructed to ignore the ani-
mal names superimposed on the picture. On congruent tri-
als, the identity of the picture and the word matched (e.g., a
picture of a cat with the word CAT superimposed), whereas
on incongruent trials, the identity of the picture and the
word conflicted (e.g., a picture of a cat with the word DOG
superimposed). Stimulus-response mappings (e.g., the cor-
respondence between keys on the keyboard [A, S, D, or F]
and animal pictures [dog, fish, cat, bird]) were randomized
across participants. Trials were separated by an inter-trial

Fig. 1 Experimental design.

(A) Trial sequence. Exemplar
trials for Diagnostic and Inducer
phases for each condition. (B)
ISPC for each phase. ISPC is the
same in both conditions. MI and
MC categories are counterbal-
anced across participants

for no-reward condition

Inducer phase only for
reward-condition

Reward condition
diagnostic phase

interval (ITI) of 1000ms. A crosshair was presented at
the center of the screen during the ITI. The crosshair was
replaced with a reward stimulus on trials in which partici-
pants received reward (only in the Diagnostic phase of the
Reward condition).

After the instructions, participants first completed the
Inducer phase, which consisted of three blocks of 240 tri-
als each for a total of 720 trials. Specifically, trials with
two types of animal pictures were 90% congruent (mostly
congruent, or MC condition, Fig. 1B), and trials with the
other two types of animal pictures were congruent 10% of
the time (mostly incongruent, or MI condition, Fig. 1B).
The animal-congruence mappings were randomized across
participants.

After the Inducer phase, participants in both conditions
completed a Diagnostic phase consisting of one block of
192 trials. In this phase, participants performed the same
task, except that the previously learned ISPC biases were
changed-all stimuli had the same 50% probability of appear-
ing in a congruent trial. Note that in the Diagnostic phase,
the proportion congruence condition (MC or MI) of a stimu-
lus refers to its previous ISPC in the Inducer phase. Criti-
cally, participants in the Reward condition were instructed
that quick and accurate responses would be probabilistically
rewarded (Fig. 1 A). However, whether a trial was rewarded
was determined randomly. We did not use RTs for assigning
reward to avoid congruent trials, which are typically faster
than incongruent trials, to be more frequently rewarded than
incongruent trials and hence introduce confounds. We do
not expect this procedure to affect our conclusions, as our
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main focus is the global effect of reward rather than the spe-
cific reward policy.

Specifically, one MI animal category and one MC animal
category carried a 90% chance of paying out high reward
(10 points) for accurate responses while the other two ani-
mal categories had a 10% chance of paying out low reward
(1 point). On trials in which they received reward, partici-
pants were presented with either “+1” or “+10” points dis-
played within a hexagonal teal-colored shape during the ITI
inter-trial interval (1000 ms). In the No-reward condition,
the procedure of the Diagnostic phase remained identical
to the Reward condition, with the exception that no reward
was provided.

Before starting the main task, participants went through
a practice phase, in which they were extensively instructed
on (1) the correct stimulus-response mappings, and (2) the
picture-word Stroop task. Participants practiced the main
task for 16 trials. To prevent the practice phase from con-
founding the learning in the main task, the practice phase
used different line drawings (two per category) than those
used in the main task. The practice phase is explained in
detail in the Supplemental Materials.

Conventional statistical analysis

RTs faster than 200ms or slower than 3,000ms were
excluded, consistent with prior research using this task
(e.g., Bugg and Dey 2018; Bugg et al. 2011). In addition,
only correct responses were included in the analysis of RTs.
Both exclusions eliminated less than 1% of the trials. Mean
RTs and error rates for each phase and each condition are
presented in Table 1. We conducted 2 X 2 repeated-measures

Table 1 Mean Reaction Time (ms) and Error Rates

analyses of variance (rmANOVAs) with factors of ISPC
(MC and MI) and Trial Type (Congruent and Incongruent)
for both error rates and RT in the Induction phase as well as
the Diagnostic phase. Additionally, to examine the dynam-
ics of ISPC learning in the Diagnostic phase, we split the
Diagnostic phase into two halves and repeated the afore-
mentioned rmANOVAs on each half. Finally, we examined
whether the amount of reward obtained in the Diagnostic
phase of the Reward condition had any effect on ISPC using
independent sample #-tests. Here, the ISPC effect was quan-
tified as the interaction between PC and Trial Type using the
difference in congruency effect (i.e., incongruent - congru-
ent) between MC and MI conditions (Bugg et al. 2011). All
statistical analyses were conducted using Pingouin (version
number: 0.3.12; Vallat (2018).

Model-based analysis

Modeling the learning of cognitive control demand. We
used a reinforcement-learning model to more precisely
capture the dynamics of how participants tracked the sta-
tistical structure of cognitive control demand (i.e., ISPC in
this study) throughout the different phases. The model pre-
dicts the probability of encountering an incongruent trial for
each animal category across the task. A model was applied
to each category to account for the manipulation of PC at
the animal category level. The predicted incongruency of
the presented category was modeled and updated on each
trial as P; < P, + a (c— P;), where P, is the predicted
incongruency (i.e., the predicted probability of encounter-
ing an incongruent trial) for animal category i presented
on the current trial, and ¢ encodes the incongruency at the

Phase Condition Item type PC DV Trial type Congruency effect
Con Inc
Induction No-reward MC RT 750 (117) 860 (159) 110 (81)
Error rate 4.4% (0.03) 7.3% (0.06) 2.9% (0.06)
MI RT 753 (129) 806 (140) 53 (60)
Error rate 4.1% (0.04) 5.9% (0.04) 1.7% (0.04)
Reward MC RT 801 (171) 914 (202) 113 (84)
Error rate 4.1% (0.04) 6.2% (0.07) 2.1% (0.06)
Ml RT 816 (183) 860 (186) 44 (60)
Error rate 4.3% (0.05) 6.0% (0.05) 1.5% (0.05)
Diagnostic No-reward MC RT 770 (160) 836 (177) 66 (76)
Error rate 5.5% (0.05) 7.5% (0.07) 2.0% (0.05)
Ml RT 771 (166) 813 (170) 42(73)
Error rate 5.4% (0.06) 6.6% (0.6) 1.2% (0.05)
Reward MC RT 749 (159) 835 (189) 86 (75)
Error rate 4.5% (0.07) 6.7% (0.08) 2.2% (0.06)
MI RT 756 (159) 817 (171) 61 (62)
Error rate 4.1% (0.05) 5.8% (0.06) 1.7% (0.05)

Note. Values in parentheses indicate standard deviation. PC=proportion congruence; rt=reaction time; mc=mostly congruent; mi=mostly
incongruent; dv=dependent variable. Note that items in the diagnostic phase were 50% congruent
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current trial, where congruent and incongruent trials were
coded as 0 and 1, respectively. In other words, on each trial,
the updated P;( i.e., on the left side of the equation) is a
sum of the current value of P;( i.e., on the right side of the
equation) and an updating term based on the current-trial
PE, defined as (¢ — P;), weighted by a learning rate « . For
the Inducer phase, all P;s were initialized as 0.5 to reflect
a neutral prediction of incongruency. The initial P; of the
Diagnostic phase was set to the final P; of the Inducer phase
to simulate the retention of ISPC. The model incorporates
two learning rates ( « s), one for the Inducer phase and one
for the Diagnostic phase.

Behavioral model fitting. To model how P( subscripts
are removed to indicate a vector of all trial-wise values for
the variable) influences RT, a linear model using |PE]| as
a predictor was constructed to predict trial-wise RT (Chiu
et al. 2017; Jiang et al. 2020a; Muhle-Karbe et al. 2018).
The absolute value of PFE is used because only the mag-
nitude but not the direction of PFE is required to examine
the strength of learning. Specifically, a larger |PE| indi-
cates more deviation of the predicted probability of incon-
gruency from the actual (in)congruency, and when used to
guide cognitive control, will cause suboptimal processing
and slower RT (Jiang et al. 2014, 2015). In addition to the
model-based regressors, we included five binary predictor
variables. The first coded for the congruency of the current
trial, c, to account for the congruency effect, and the four
resulting binary predictor variables coded for each of the
four animal categories present on the current trial to account
for potential biases that may differentially influence RTs for
each of the animal categories. All trials were included in
the trial-by-trial modeling of P and |PE], but only correct
trials were included in the multiple linear regression pre-
dicting RT.

The learning rates are the only free parameters of this
model. To determine the best-fitting « s, we implemented
a standard minimization function (using the L-BFGS-B
algorithm) that was run with 30 different randomly selected
starting points for each participant to avoid local minima.
For each participant, the parameter fits of the model with the
smallest sum of squared errors (SSE) of predicted RT over
all trials was selected. Within each phase, the learning rate
was shared by all category-specific learning models. The
optimization procedure also produced the regression coef-
ficient of|[PE| (8 py), which indicates how much RT scales
with the magnitude of prediction error.

Model-based statistical analysis. Because [ pp was
generated based on the best-fitting learning model, it quan-
tifies the strength of learning: As discussed above, a positive
B pp indicates that RT slows with PE magnitude and thus
suggests the behavior is consistent with the learning model
(Jiang et al. 2015). In other words, a positive coefficient

suggests that the participant learned the current ISPC and
reacted to deviations from it by slowing their response.
To probe the difference in ISPC learning between condi-
tions, we conducted an independent-samples ¢-test on 8 pp
between conditions (Reward or No-reward) in the Inducer
and Diagnostic phases separately. The same analysis was
also performed on learning rates. Welsh’s #-test was used to
account for unequal sample sizes between the Reward and
No-reward conditions.

Results

Because we more mostly interested in the dynamics of
learning captured by the reinforcement-learning model, we
will briefly report the results of the conventional statistical
analysis below. The full results are in Supplementary Notes
1 and 2. We report the descriptive statistics of RTs and error
rates across trial types, phases and conditions in Table 1.
Their statistical results are listed in Table 2 (RTs) and 3
(error rates). Note that the ANOVA results of the No-reward
condition are originally reported in Bustos and colleagues
(2024).

RT data from the Inducer phase showed that participants
in both conditions learned the ISPC (No-reward condition:
p<.001, np2=0.26; Reward condition: p<.001, np2=0.43
(Fig. 2). They further suggested reduced learning of the new
(unbiased) ISPC in the Reward condition compared to the
No-reward condition during the second half of the Diagnos-
tic phase, resulting in a significant difference in the change in
ISPC across the first and second halves of the phase between
conditions (p =.03, np2=0.01). We found no difference in
the ISPC effect between the low- and high-reward items in
the Diagnostic phase of the Reward condition. Additionally,
we did not observe a significant correlation between the
behavioral ISPC effect and the amount of reward accumu-
lated (r=—.04, p=.66). This allowed us to rule out the pos-
sibility of reward amount being a confounding factor of the
results (Supplementary Note 3). In summary, reward seems
to interfere with learning of the ISPC regularities.

To evaluate the robustness of our findings and address
concerns about potential sample differences, we conducted
a three-way mixed-effects model examining the effect of
Reward, PC, Congruency and their interactions on RT in
the diagnostic phase. This model showed no main effect of
reward on response time (p =.72), indicating that simply
receiving a reward did not globally alter response speed.
Second, the model indicated that reward modulated the con-
gruency effect (p =.022). This aligns with previous findings
(e.g., Prével et al. 2021) showing that reward can bias cog-
nitive control strategies, such as enhancing proactive con-
trol when incongruent trials are rewarded.
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Table 2 Conventional statistical results: RT

Phase Condition Effect DOF F value Pvalue Effect size 0,
Inducer No-reward Main effect of trial type (1,107) 258.53 <0.001 0.71
Reward (1,115) 191.86 <0.001 0.63
No-reward Main effect of ISPC (1,107) 18.85 <0.001 0.15
Reward (1,115) 8.79 <0.001 0.07
No-reward Trial type x ISPC interaction (1,107) 36.63 <0.001 0.26
Reward (1,115) 87.80 <0.001 0.43
Diagnostic No-reward Main effect of trial type (1,107) 114.37 <0.001 0.52
Reward (1,115) 174.84 <0.001 0.61
No-reward Main effect of ISPC (1,107) 12.15 0.146 0.02
Reward (1,115) 0.86 0.36 0.01
No-reward Trial type x ISPC interaction (1,107) 5.57 0.02 0.05
Reward (1,115) 15.75 <0.001 0.12
Diagnostic: First half No-reward Main effect of trial type (1,107) 71.05 <0.001 0.40
Reward (1,115) 126.51 <0.001 0.52
No-reward Main effect of ISPC (1,107) 0.35 0.56 0.003
Reward (1,115) 0.84 0.36 0.01
No-reward Trial type x ISPC interaction (1,107) 10.54 0.002 0.09
Reward (1,115) 8.56 0.004 0.07
Diagnostic: Second half No-reward Main effect of trial type (1,107) 54.21 <0.001 0.34
Reward (1,115) 133.8 <0.001 0.54
No-reward Main effect of ISPC (1,107) 3.05 0.08 0.03
Reward (1,115) 0.49 0.48 0.004
No-reward Trial type x ISPC interaction (1,107) 0.03 0.86 <0.001
Reward (1,115) 8.51 0.004 0.07
Note. Items in the diagnostic phase were 50% congruent. dof=degree of freedom
Table 3 Conventional statistical results: Error rate
Phase Condition Effect DOF F value Pvalue Effect size 0,
Inducer No-reward Main effect of trial type (1,107) 38.61 <0.001 0.26
Reward (1,115) 22.28 <0.001 0.16
No-reward Main effect of ISPC (1,107) 6.14 0.015 0.05
Reward (1,115) 0.11 0.74 <0.001
No-reward Trial type x ISPC interaction (1,107) 4.26 0.04 0.04
Reward (1,115) 0.99 0.32 0.01
Diagnostic No-reward Main effect of trial type (1,107) 21.02 <0.001 0.16
Reward (1,115) 28.34 <0.001 0.20
No-reward Main effect of ISPC (1,107) 2.1 0.15 0.02
Reward (1,115) 1.71 0.74 0.01
No-reward Trial type x ISPC interaction (1,107) 1.53 0.22 0.01
Reward (1,115) 0.54 0.46 0.004
Diagnostic: First half No-reward Main effect of trial type (1,107) 16.61 <0.001 0.13
Reward (1,115) 10.70 0.001 0.09
No-reward Main effect of ISPC (1,107) 0.35 0.55 0.003
Reward (1,115) 0.72 0.40 0.001
No-reward Trial type x ISPC interaction (1,107) 2.13 0.15 0.02
Reward (1,115) 3.15 0.08 0.03
Diagnostic: Second half No-reward Main effect of trial type (1,107) 5.14 0.03 0.06
Reward (1,115) 28.35 <0.001 0.20
No-reward Main effect of ISPC (1,107) 2.08 0.15 0.02
Reward (1,115) 1.71 0.74 0.01
No-reward Trial type x ISPC interaction (1,107) 0.05 0.83 0.02
Reward (1,115) 0.54 0.46 0.004

Note. Items in the diagnostic phase were 50% congruent. dof=degree of freedom
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Fig.2 RT results. (A) RTs by trial type (congruent or incongruent) and
proportion congruency (mostly congruent, MC, or mostly incongru-
ent, MI) in the No-reward condition for each phase. (B) RTs by trial

type (congruent or incongruent) and proportion congruency (mostly
congruent, MC, or mostly incongruent, MI) in the Reward condition
for each phase

Table 4 Three-way mixed-effects  predictor Estimate (B\beta) SE z-value p-value
g‘}fa‘izlz(ﬁfl::;fvxscﬁrﬁrs‘g?)‘:y * Tntercept 805.599 13.978 57.634 <0.001
' Reward 56.580 19.424 2913 0.004
Congruency -59.240 2.193 -27.012 <0.001
Phase 12.193 3.380 3.607 <0.001
Reward x Congruency -4.016 3.048 -1.318 0.188
Reward x Phase -51.633 4.697 -10.994 <0.001
Congruency x Phase 6.240 4.780 1.306 0.192
Reward x Congruency x Phase -16.213 6.642 -2.441 0.015

To account for potential group differences, we conducted
an additional three-way mixed-effects model examining the
effect of Reward, Congruency, Phase (Inducer vs. Transfer)
and their interactions on RT (see Table 4). Since the Inducer
phase serves as a baseline in which neither group received
reward, this approach controlled for sample-related vari-
ability before the introduction of reward. This model
showed a small but reliable effect indicating that the effect
of reward on congruency differed between phases (p=.015,
2=0.013). This result supports the interpretation that the
observed effects in the Transfer phase were driven by how
reward influenced the adaptation of control settings over
time, rather than inherent group differences.

Briefly, the error rate data showed two patterns: (1)
higher error rates in incongruent than congruent trials and
(2) no significant difference in ISPC effects between the
reward conditions, which indicates that the difference in
ISPC effects in RT data was unlikely to be attributable to a
speed-accuracy tradeoff.

In summary, reward seems to interfere with learning of
the ISPC. Below, we provide support for this hypothesis
using model-based measures that offer a more nuanced
account of learning dynamics.

Model-based results

Inducer phase. We used trial-wise model estimates of
unsigned PE of incongruency to predict RT in a linear
model. Previous studies have shown that trial-wise RT
scales with PE in an ISPC design (Chiu et al. 2017; Jiang et
al. 2020a). Replicating these findings, we found that 8 pp
was significantly above zero in both conditions (No-reward
condition: #107)=3.50, p<.001, d=0.34; Reward condi-
tion: #115)=10.7, p<.001, d=0.99, Fig. 3A). As a vali-
dation, we tested whether the regression weight of PE was
correlated with the ISPC effect in RT. In both conditions,
the behavioral ISPC effect was strongly associated with the
regression weight of |PE|( No-reward: r=.59, p<.001,
Reward: r=.63, p<.001).

Importantly, the average regression weight of |PE|(
i.e., B pp) was significantly smaller in the No-reward con-
dition than the Reward condition, #211)=-2.63, p=.01,
d=0.35 (No-reward: M =54, SE=13.90, Reward: M=101,
SE=11.45), suggesting that the Reward group learned the
ISPC better than the No-reward group. To account for this
between-group difference, the S py of the Inducer phase
was used as a baseline in the Diagnostic phase analysis
(reported below). In addition to (3 pg, we also compared
learning rates between the two conditions. To account for

@ Springer



114 Page 8 of 13 Cognitive Neurodynamics (2025) 19:114
A. Beta values of the absolute value of prediction error B. Learning rate
600 . @ No-reward ll - o - -
5 !\ . @ Reward .
- : A /\ 08| .
2000 3 4§ V [ ¢ 2 "
’ P j .............. .y ® 06 ’
w 0 - Y > = .
5 < N £ i : .
-200( i  § \ 5 0.4 4 . h
’ \ : 3 g s
-400 s . . . 3 4 i
- [ 02| % - .‘
-600 | : ; ‘ '
‘ 0
Inducer Diagnostic Inducer Diagnostic
Phase Phase
o D. .
C. No-reward condition Reward condition
600 - 600
[+
o
400 400
o o
g e g
% 200 VT = T 200
g ® LA @ Use® lo 8
= o |
E 0 . &E oiéc E 0
) J [o) Qcpo
-200 ° N ° =200
® (s}
r=0.009, p = 0.928 r=0.522, p = 0.000
-400 -400 °
-600 -400 -200 0 200 400 600 -600 -400 -200 0 200 400 600

Diagnostic bPE

Fig.3 Model-based RT results. (A) Regression weights of the absolute
value or prediction error for each condition and each phase. (B) Fit
learning rates for each condition and phase. (C) Correlation between
the regression weight of|PE]| in the Inducer phase and in the Diagnos-

the non-Gaussian distributions of learning rates a non-para-
metric test, the Mann-Whitney U test (Wilcoxon rank-sum
test) was implemented to compare learning rates within
the Inducer phase and revealed no significant difference
between conditions (U=6711, p=.34, Common-Language
Effect Size (CLES)=0.54; No-reward: M=0.22, SE=0.03,
Reward: M=0.17, SE=0.03, Fig. 3B).

Diagnostic phase. Similar to the Inducer phase, we used
B pr as a measure of ISPC learning. In other words, as
the learning models adapt to the new ISPC, a strong mod-
ulation of PE on RT (i.e., large 3 py) indicates that par-
ticipants learned the (now unbiased) ISPC and used it to
influence cognitive control and behavior. Conversely, a
weak effect of S pj indicates no learning of ISPC. Thus,
by comparing this measure between conditions, we tested
whether the presence of reward affects the learning of the
new ISPC in the Diagnostic phase. An independent #-test
showed that the 5 p in the No-reward condition (M =59,
SE=14.0) was larger compared to the Reward condition
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Diagnostic bPE

tic phase for the No-reward condition. (D) Correlation between the
regression weight of|PE| in the Inducer phase and in the Diagnostic
phase for the Reward condition

(M=-23, SE=13.72; #221)=4.19, p<.001, Fig. 3A). This
finding suggests that the Reward condition showed reduced
learning of the new (unbiased) ISPC compared to the No-
Reward condition. This is consistent with the split-phase RT
analysis reported above, in which participants in the Reward
condition were shown to carry the outdated ISPC from the
Inducer phase throughout the second half of the Diagnostic
phase, unlike participants in the No-reward condition.

One alternative explanation to this finding is that the sub-
jects in the Reward condition were in general worse learners
of ISPCs. To rule out this possibility, we used the Inducer
phase as a baseline and tested the change of 8 pp from the
Inducer to the Diagnostic phase and found that the change
in 8 pp was also significantly larger in the Reward con-
dition (M'=83, SE=17.95) than the No-reward condition
(M=-0.26, SE=0.02, #(213)=-4.39, p<.001, d=0.58).
This result indicates that subjects in the Reward condition
reduced their learning of ISPC compared to those in the No-
reward condition.
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An additional alternative hypothesis is that the subjects
in the Reward condition are more sensitive to the biased
ISPC in the Inducer phase (i.e., 90% and 10%) compared to
the unbiased ISPC in the Diagnostic phase (i.e., 50%). As
B pg scales with the strength of ISPC learning, this hypoth-
esis would predict that subjects showing larger § pp in the
Inducer phase will show smaller 3 pp in the Diagnostic
phase. However, opposite to this prediction, we observed
a significant positive cross-subject relationship of the PE
weights between the two phases in the Reward condition
(r=.52, p<.001, Fig. 3C). As a control analysis, we found
that when no reward was presented, this relationship was
absent in the No-reward condition between phases (»=.009,
p=.93, Fig. 3D). This difference in correlations was statisti-
cally significant (z=4.19, p<.001). Thus, these findings did
not support the alternative explanation.

The Mann-Whitney U test comparing learning rates
within the Diagnostic phase revealed a significant differ-
ence between conditions (U=7802, p=.001, CLES=0.62;
Reward condition: M=0.18, SE=0.03; No-reward con-
dition: M=0.34, SE=0.04, Fig. 3B). The learning rate
increased significantly in the No-reward condition from the
Inducer phase to the Diagnostic phase #(214)=2.53, p=.01,
d=0.34, but did not differ significantly between phases
for the Reward condition, #230)=-0.18, p=.85, d=0.02.
Finally, we found that the change in learning rate between
phases was significant between conditions, #(195)=1.98,
p=.049, d=0.28 (Fig. 3B). The significant increase in the
learning rate from the Inducer to the Diagnostic phase for
the No-reward study further supports the notion that learn-
ing of the ISPC in the Diagnostic phase was faster in the No-
reward than the Reward condition. In summary, we observed
slower learning of the ISPC in the Diagnostic phase in the
Reward than in the No-reward condition, manifested in both
PE modulation on RT and learning rates.

Discussion

Extant work probing the influence of reward on cognitive
control has examined its contribution to performance in
several domains including attention (Botvinick and Braver
2015; Chiew and Braver 2014; Engelmann and Pessoa
2014; Notebaert and Braem 2015; Yee and Braver 2018)
and memory encoding (Adcock et al. 2006; Miendlarze-
wska et al. 2016; Murty et al. 2016; Spaniol et al. 2014;
Wittmann et al. 2005). In the present study we aimed to
study how cognitive control adapts to multiple external
factors, such as reward and statistical demand regular-
ity. Using a between-subject design that manipulated the
presence of performance-contingent reward in a variant of
the Stroop task, our results first show that, in the Inducer

phasev—when no reward was available—participants in
both groups learned associations between stimulus features
(here, the animals in the pictures) to guide cognitive control.
As a result, larger Stroop effects (suggesting less cognitive
control) were observed for items that had been MC than
MI items, replicating the classic ISPC effect (Bugg et al.
2011; Jacoby et al. 2003). Importantly, in the subsequent
Diagnostic phase, where all items were now unbiased, par-
ticipants in the Reward condition showed slower learning
of the new ISPC contingencies than those in the No-reward
condition. Specifically, our model-based analyses revealed
that participants in the No-reward condition demonstrated a
significant increase in 3 pp from the Inducer phase to the
Diagnostic phase, indicating greater sensitivity to environ-
mental changes, whereas participants in the Reward condi-
tion did not show a change in  p, indicating they did not
update their control settings. Together, these results provide
evidence for the interference of reward incentives on the
updating of learned control strategies.

Although the three-way interaction between reward, PC,
and congruency was not significant in our factorial analysis,
this does not imply that reward did not affect ISPC learning.
Instead, our model-based analysis of the PEs revealed that
reward influenced ISPC adaptation dynamically rather than
as a static interaction. Specifically, we found that reward
reduced adaptation to the new (unbiased) ISPC compared
to the No-reward condition. This effect was further reflected
in learning rates: participants in the No-reward condition
exhibited an increase from the Inducer to the Diagnostic
phase, whereas no change was observed in the Reward
condition.

An alternative explanation is that participants in the
Reward condition were simply worse at learning ISPC con-
tingencies. However, we found a significant positive cross-
subject correlation between PE weights in the Inducer and
Diagnostic phases in the Reward condition, while no such
relationship was observed in the No-reward condition. The
difference in correlations was statistically significant, rul-
ing out the possibility that individual differences in learn-
ing ability drove these effects. Instead, reward appeared to
promote stability in learned control settings, leading par-
ticipants to persist in applying outdated ISPC expectations
even when the statistical structure changed.

There are several non-exclusive accounts for why reward
hinders the learning of new ISPC contingencies. First, in the
Reward condition, participants are simultaneously learn-
ing the structure of reward (e.g., the RT threshold to obtain
reward, and which items yield high reward, etc.) and the
ISPC. Both forms of learning generate prediction error sig-
nals in overlapping neural circuits, including the striatum
and the midbrain (Daw et al. 2011; Kim et al. 2009; Schon-
berg et al. 2007; Schultz et al. 1997) and thus may lead to

@ Springer



114 Page 10 of 13

Cognitive Neurodynamics (2025) 19:114

competition and subsequent masking of the PE caused by
the ISPC (Chiu and Egner 2019; Chiu et al. 2017). Second,
because learning in the Reward condition involves two fac-
tors (reward and ISPC), this may carry an addcasueditional
cognitive cost and make the learning of ISPC less effective
(Collins 2017). Third, reward may bias attentional resources
toward reward-related features at the expense of conflict-
driven learning (Niv 2019). It has been shown that attention
magnifies PE in perception (Jiang et al. 2013). Similarly,
the learning of ISPC, when not attended, may receive only
a weak learning signal of PE, leading to reduced learning.
Finally, because both reward and ISPC learning occur at
the item level, they may compete within working memory,
increasing interference and reducing the efficiency of ISPC
learning.

Our findings contrast with those of Prével and colleagues
(2021), who found that reward reduced the congruency
effect when incongruent trials were selectively rewarded but
increased the congruency effect when congruent trials were
rewarded. Their results suggest that reward can enhance
proactive control when it reinforces conflict adaptation
(i.e., rewarding incongruent trials), leading to more efficient
conflict resolution. Conversely, rewarding congruent trials
promoted automatic responses, increasing susceptibility to
conflict when incongruent trials appeared.

In contrast, in our study, reward increased the congru-
ency effect. This pattern is more similar to Prével and
colleague’s (2021) “congruent reward” condition, where
reward reinforced reliance on more automated word-read-
ing responses rather than encouraging conflict resolution.
However, unlike this study, our reward manipulation did not
explicitly reinforce specific trial types—instead, reward was
probabilistic and based on overall task performance. This
suggests that reward in our study may have stabilized exist-
ing control settings rather than promoting flexible adapta-
tion to conflict. Instead of facilitating the ability to update
control strategies in response to changing task demands,
reward may have reinforced a more rigid approach to con-
flict processing, amplifying interference from incongru-
ent trials. This interpretation aligns with our major finding
that reward masks the learning of new ISPC contingencies,
which is another manifestation of stabilized control settings.
Just as reward hindered the ability to flexibly adjust ISPC
learning in response to new conflict statistics, it may have
similarly reinforced pre-existing conflict processing ten-
dencies, increasing rather than decreasing the congruency
effect. This provides further evidence that reward can some-
times encourage stability at the cost of flexibility in cogni-
tive control (Chiu and Egner 2019; Chiu et al. 2017; Hefer
& Dreisbach., 2017, 2020).

Our findings are also in line with prior empirical work
documenting this tradeoff, particularly in tasks that pit
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cognitive stability against the need for flexible adaptation.
Notably, Hefer and Dreisbach (2017, 2020) demonstrated
this tradeoff in the AX Continuous Performance Task (AX-
CPT). They showed that performance-contingent reward
enhanced cue maintenance—reflecting greater cognitive
stability—but impaired adaptation when task contingencies
changed. This was especially evident when cue validity was
removed, yet participants continued to rely on outdated cue-
based strategies when behavior was rewarded. This pattern
mirrors our findings: in the diagnostic phase, despite the
shift in ISPC structure, participants in the Reward condi-
tion continued to apply previously learned control settings.
Although Hefer and Dreisbach did not use computational
modeling, their results suggest that similar reward-driven
reductions in learning rate might underlie these effects.
Together, their work provides converging support for the
idea that reward can foster stable control at the cost of flex-
ibility in adapting to changing task demands.

While our results may seem to be inconsistent with pre-
vious research demonstrating that performance-contingent
reward increases proactive cognitive control (Chiew and
Braver 2014; Frober and Dreisbach 2014), we argue that
both the previous and current findings reflect a similar strat-
egy under the framework of the expected value of control
(EVC) theory (Shenhav et al. 2013). The EVC theory posits
that cognitive control is applied to balance reward and cost
(e.g., cognitive effort). When no reward is available, ISPC
can be learned efficiently since effort is strategically allo-
cated where conflict is expected (e.g., when encountering
MI items). However, when reward is contingent on perfor-
mance, cognitive effort allocation is biased towards maxi-
mizing reward rather than updating statistical regularities,
allowing for more effort to be applied to both MC and MI
items. As a result, it is no longer necessary to distinguish
between MC and MI items. This is crucial in the current
Reward condition, as reward depends on fast responses.
Thus, performance-contingent reward will lead to two com-
patible consequences corresponding to the previous and the
current findings. First, cognitive control can be applied pro-
actively (i.e., prior to the onset of the item). Second, the re-
learning of ISPC becomes less valuable, as there is no need
to separate MC and MI items. This may explain why, in our
Reward condition, participants showed greater stability in
their control settings rather than flexibly adapting to the new
ISPC contingencies.

The ISPC manipulation is designed to demand reactive
cognitive control (i.e., demand cannot be predicted before
the item is displayed). This leads to the intriguing possibility
that this reward-congruence learning tradeoff can be differ-
ent in the case of proactive cognitive control. For example,
in a context-specific proportion congruency task (Jiang et
al. 2020b; King et al. 2012), the expected congruence of the
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current trial (i.e., the context) can be proactively cued with-
out revealing the correct response. If this paradigm were
combined with the current design, we would predict the
opposite pattern of results. Specifically, if the present find-
ings reflect a cost-benefit tradeoff in cognitive control, then
proactive cognitive control—which can be deployed before
the trial start— would benefit more from the latest congru-
ence information than reactive cognitive control. Therefore,
in a rewarded diagnostic phase, participants could improve
performance through proactive control, and we would pre-
dict increased learning in this condition. Indeed, Braem et
al. (2014) found that reward promoted increased sensitivity
to context-specific congruency effects, lending credibility
to this hypothesis. Though, in these studies, participants
were not afforded the opportunity to re-learn previously
established statistical regularities in control demands. Alter-
natively, reduced learning in the rewarded condition (a rep-
lication of the current results) would support the hypothesis
that reward and congruence PE are encoded by a shared
mechanism, and that the reduced learning is driven by their
interference.

Another avenue of future research could further investi-
gate whether different reward contingencies (e.g., selectively
rewarding incongruent trials) would lead to a reduction in
the congruency effect in our paradigm, as observed by Prével
and colleagues (2021). If reward selectively enhances pro-
active control only when directly tied to incongruent trials,
this could help resolve the differences between studies and
clarify the conditions under which reward promotes flex-
ibility versus stability in cognitive control.

Importantly, a limitation of the present study is its quasi-
experimental design: participants in the Reward condition
were recruited through a general online platform accessible
to the broader population, whereas those in the No-reward
condition were recruited from an online university partici-
pant pool. Although our model-based analysis helps miti-
gate concerns about baseline group differences, we caution
that differences in recruitment context may limit the gener-
alizability of our findings. Future studies should replicate
these results using fully randomized or matched designs.

More broadly, this study made an initial attempt to gauge
the relative strength of different factors affecting cognitive
control. Real-world control demands often require adap-
tation to multiple simultaneous factors (e.g., reward, task
structure, effort). Although EVC theory has the potential to
explain the adaptation of cognitive control, it relies on the
understanding of how benefits and costs of multiple factors
interact. The interaction seems to be complex, as the factors
may not be treated independently. For example, our result
shows that reward masks ISPC learning. They indicate that
a comprehensive view of how the metacontrol of cognitive
control must consider the interaction of multiple factors and

provides new insight into how reward modulates the stabil-
ity-flexibility tradeoff in cognitive control.
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