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‘When making decisions, we sometimes rely on habit and at other times plan toward goals. Planning requires
the construction and use of an internal representation of the environment, a cognitive map. How are these
maps constructed, and how do they guide goal-directed decisions? We coupled a sequential decision-making
task with a behavioral representational similarity analysis approach to examine how relationships between
choice options change when people build a cognitive map of the task structure. We found that participants
who encoded stronger higher-order relationships among choice options showed increased planning and bet-
ter performance. These higher-order relationships were more strongly encoded among objects encountered
in high-reward contexts, indicating a role for motivation during cognitive map construction. In contrast,
lower-order relationships such as simple visual co-occurrence of objects did not predict goal-directed plan-
ning. These results show that the construction of cognitive maps is an active process, with motivation dic-
tating the degree to which higher-order relationships are encoded and used for planning.

Public Significance Statement

This study combines behavioral measures and computational modeling to show that people build inter-
nal representations of a task—cognitive maps—and that the quality of their maps predicts how much
they plan toward reward. We found that these maps were abstract, encoding relationships beyond

§ those derived from immediate experience, and that they were more accurate when more reward was

& at stake. Our findings show that people’s ability and motivation to plan toward goals relate to their con-

B struction and use of cognitive maps.

,—% ; Keywords: cognitive map, behavioral representational similarity, reinforcement learning, two-step task

2 —i Supplemental materials: https://doi.org/10.1037/xge0001491.supp

f; 4 A fundamental question of human cognition is how we are able to or that happen to be located close together. Here, we ask how

sy effectively plan toward goals. Decisions are not made in a vacuum, humans learn which features of the environment are relevant for

o but rather capitalize on the structure of the world around us. Imagine planning and apply these representations to optimize behavior. In

2T moving to a new city and learning about its structure as you navigate other words: how do we build and use internal models to guide

oh — . . N . . . .

2 it. Ideally, your internal model will be set up to guide effective plan- our decisions?

g“ - ning, strongly encoding relationships among major streets that con- These internal models are commonly referred to as “cognitive
L . . . .« . ’ . .

a3 nect different neighborhoods, especially when you anticipate maps,” a term coined by Tolman to explain how rodents were able

= 2 e aie . . . .

g & visiting them frequently. However, this model may also incorporate to use spatial features of a maze to navigate toward goals (Tolman,

g features that are less relevant for planning. For example, you may 1948). Since Tolman, specific cells that represent both current

S encode relationships between streets with similar-sounding names (Hafting et al., 2005; O’Keefe & Nadel, 1978) and possible future
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spatial locations (Johnson & Redish, 2007) have been discovered,
providing the neural underpinnings for cognitive maps. Critically,
recent work has applied the concept of cognitive maps beyond spa-
tial domains and toward nonspatial and perhaps even very abstract
relationships (see Behrens et al., 2018 for review). In this view, cog-
nitive maps can represent social relationships (Park et al., 2021;
Tavares et al., 2015), transitions between tasks (Schuck & Niv,
2019; Schuck et al., 2016), and abstract associations between indi-
vidual items in a task (Constantinescu et al., 2016; Theves et al.,
2020). However, much remains unclear about how humans construct
abstract cognitive maps, how they use them to plan toward goals, and
whether the quality of these maps relates to goal-directed behavior.

Recent studies of decision-making formalize goal-directed plan-
ning over a cognitive map as ‘“model-based” reinforcement learning
(RL; Daw et al., 2005; Drummond & Niv, 2020; Gléscher et al.,
2010; Sutton & Barto, 2018). A model-based learner computes
expected values for available actions by using a representation of
the task structure. This flexible but computationally costly strategy
enables it to apply the values learned at a given goal to every path
that leads to that goal. Meanwhile, a model-free learner uses a
more efficient but inflexible strategy, only updating the value of
actions that led to reward, without considering the structure of the
task.

Here, we assess the construction of cognitive maps as a driving
force of goal-directed decisions. To do so, we had participants per-
form a variant of the “two-step” task (Daw et al., 2005, 2011; Kool
et al., 2016, 2017). This task dissociates model-based and model-free
control by exploiting the ability of the model-based system to plan
using an internal representation of the task structure, which contrasts
with the model-free reliance on direct action—reward associations.
Many prior studies using this task assume or ensure that an effective
representation of the task is present (but see Feher da Silva & Hare,
2020; Feher da Silva et al., 2023). Here we specifically trained our par-
ticipants only briefly on the rules of the task and not the actual transi-
tion structure to try and track individual differences in cognitive map
formation. These individual differences in cognitive maps may criti-
cally influence differences in model-based control. How does the
nature and quality of one’s cognitive map influence behavior?

To index cognitive map structure in a purely behavioral setting,
we developed a novel approach, which we term behavioral represen-
tational similarity analysis (behRSA). Our approach was inspired by
neuroimaging analyses (Dimsdale-Zucker & Ranganath, 2018;
Kriegeskorte et al., 2008) that assess pairwise neural pattern similar-
ity between stimuli. In our case, participants simply rated the per-
ceived relatedness of pairs of items before and after learning the
two-step task. This allowed direct insights into representational sim-
ilarity among these components as defined by the participants’ own
behavioral output. We assessed the amount of planning-relevant ver-
sus planning-irrelevant information incorporated into their maps,
and whether motivation influenced map formation.

We found that participants whose similarity ratings reflected the
higher-order transition structure earned more reward and used
more model-based control, but we found no such relationship for
components reflecting more superficial structure. Moreover, such
structure learning was amplified for contexts in which more reward
was at stake. This study introduces a method for inferring internal
representations on the basis of behavioral ratings alone and provides
insight into the way people construct and plan over these
representations.

Method
Preregistration

This article describes a preregistered replication (https:/osf.io/
uw3p7) of a pilot study. This pilot sample can be seen in the online
supplemental materials, and the data are displayed in Figures S1 and
S2 in the online supplemental materials.

Participants

We recruited 209 healthy younger (range = 18-35 years old) adults
for this study using the Cloud Research Platform and Amazon
Mechanical Turk. We excluded 48 participants based on preregistered
criteria. We excluded 32 participants because they failed to respond in
more than 20% of the trials in the decision-making task. We excluded
12 participants because they failed to respond in more than 20% of
trials in the similarity task. We also excluded participants if they
engaged in purely random action selection (Patil et al., 2021). To
determine this, we simulated 1,000 agents that responded randomly
on each trial, yielding a distribution of log-likelihoods expected
under random action selection. We excluded two participants whose
best-fitting log-likelihood exceeded the fifth percentile of this distribu-
tion (negative log-likelihood score > 172.846). We also excluded two
participants because of missing data in their behavioral representa-
tional similarity task, which rendered certain pairwise comparisons
impossible. This resulted in an effective sample of 161 younger adults
(102 male, 58 female, and one nonbinary, age range = 18-35 years,
Mg = 29.2 years). We stopped collecting data once our effective
sample size reached 160, which allowed us to detect a correlation
with the same strength of our initial study (r=.2764) with 95%
power.

All participants were compensated with a base payment of $9 and
additional performance-related payments of 1 cent for every 25
points obtained in the decision-making task. All participants gave
informed consent, and procedures were approved by the
Washington University in St. Louis Institutional Review Board.

Behavioral Representational Similarity Task

In order to test how task experience and motivation affect structure
learning, participants provided relatedness ratings of pairs of novel
3D objects that were also used as choice options in the decision-
making task (adapted with permission from Hsu et al.,, 2014;
Schlichting et al., 2015). On each trial, they were shown an initial
object for 1 s, followed by a 500 ms fixation cross, and then another
object for 1 s. Participants were then shown a “slider” bar and were
asked to move the slider to their perceived level of “relatedness”
between the two objects they had just seen (Figure 1C).
Participants had 5.5 s to provide a response. All objects were pre-
sented in the center of the screen, with image sizes of 400 x 400 pix-
els. Participants performed all pairwise ratings of all 10 objects in
both orders, resulting in 90 trials. Participants performed the behav-
ioral representational similarity task both before and after the
decision-making task. This allowed for a pre- versus postlearning
comparison of object-relatedness judgments.

Decision-Making Task

The decision-making task was designed to dissociate between
model-free and model-based decisions in a setting where
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Figure 1
Task Schematic

How related were the

previous two images? }

least - most ‘

Note. (A) Task transition structure. Four distinct first-stage states (depicted in the top and bottom row)
each contain two unique choice objects. Each of these objects deterministically leads to one of two
second-stage states (depicted in the middle row), as depicted by the colored arrows. These first-stage
states were associated with different amounts of reward that changed across the task. For the two “high-
reward” states (top row), 80% of the trials involved a high stake, with a multiplier cue indicating that any
points would be multiplied by five. For the other two “low-reward” first-stage states (bottom row), high-
stake trials occurred on only 20% of trials. (B) Representative trial. First, the participant is shown the
first-stage state and the stake multiplier and then is shown the objects. After selecting one of these,
the trial transitions to the corresponding second-stage state, where they receive seven space treasure
pieces after selecting the second-stage object. The high-stake multiplier amplifies this to 35 points.
(C) Representative trials of the behRSA task. Participants are shown each novel object pairing twice.
(D) A portion of a hypothetical matrix of similarity ratings generated from the behRSA task.
behRSA = behavioral representational similarity analysis. See the online article for the color version
of this figure.

participants need to learn about the structure of the task, and was
based on a recently developed “two-stage” sequential decision-
making task (Kool et al., 2017). Each trial of the task started ran-
domly in one of four first-stage states. Each of these states offered
a choice between a unique pair of “teleporters,” presented
side-by-side. Participants used the “F” key on their keyboard to
choose the left teleporter, and the “J” key to choose the right tele-
porter. This choice determined which one of two second-stage states

would be encountered. For each pair, one of the teleporters determin-
istically led to a purple second-stage state, and the other deterministi-
cally led to a red second-stage state. Importantly, each teleporter
always led to the same second-stage state (Figure 1A).

Each second-stage state contained a unique “generator” that was
associated with a scalar reward. Participants were instructed to
press the spacebar key to interact with the generator so that it pro-
vided them with “space treasure,” and they were told that the fuel
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rods used by the generators would sometimes yield more or less
space treasure. The payoffs of the generators changed over the
course of the experiment according to independent random walks.
Their reward distributions were initialized randomly for each partic-
ipant within a range of 0-9 points and then varied according to a
Gaussian random walk (¢ = 2) with reflecting bounds at 0 and 9.

This task distinguishes between model-based and model-free
strategies, since only a model-based decision-maker generalizes
experiences from one starting state to all other starting states. That
is, after receiving a high reward in a second-stage state, a model-
based learner can use its knowledge of the transitions to plan its
way back to that same second-stage state. A model-free agent, on
the other hand, learns through action-reward associations and
will only become more likely to choose that same action in the
same first-stage state, not transferring experiences from one first-
stage state to the others (Kool et al., 2016). The computational
model, described below, uses RL to capture this distinction in a sin-
gle model-based weighting parameter. The 10 objects were ran-
domly assigned as teleporters and generators for each participant
separately.

The first-stage states were not only uniquely identifiable by the
pair of teleporters, but they also were associated with a set of back-
ground images. Specifically, each of the first-stage states was always
presented with a background image that belonged to one of four
“location” categories. Two of the first-stage states were always
shown with background images of “inside” locations (libraries and
restaurants), and the other two with images of “outside locations”
(deserts and forests). Each of these categories contained four images.
Their presentation was selected pseudorandomly, so that each back-
ground image was shown equally frequently.

In order to introduce differing incentives for model-based control
and demands for learning the task structure, we introduced a “stakes”
manipulation in this task (Kool et al., 2017). At the start of each trial,
an incentive stake cue indicated by how much the reward obtained at
the end of the trial would be multiplied. On some trials, this cue indi-
cated that the points would be multiplied by 5 (high stakes). On other
trials, the cue indicated that the points would be multiplied by 1 (low
stakes). For example, if a participant earned five space treasure
pieces on a high-stakes trial, the multiplier would result in a total
of 25 points. On a low-stakes trial with the amount of space treasure,
the participant would earn five points. Importantly, the chances of a
high-stake trial were different between the first-stage states. For each
participant, either the “inside” or “outside” first-stage states were
selected as “high-stakes” states, and the other as the “low-stakes”
states. In the high-stakes states (high-stake context), 80% of trials
had a 5x multiplier and 20% of trials had a 1x multiplier. In the
low-stakes states (low-stake context), 20% of trials had a 5x multi-
plier and 80% of trials had a 1x multiplier.

At the start of each trial, participants saw the category background
and the stake multiplier for 1 s. Then, the stake moved to the top left
corner and the teleporters were presented, and participants were
given a time limit of 1.5s to choose between them (following
prior work by Kool et al., 2017). After the response, the selected
option was highlighted, and the nonselected option was grayed out
for the remainder of the response period. There was a 500 ms inter-
val between the end of the first-stage response period and the onset
of the second stage. Following a 200 ms interval after the generator
was selected, participants were shown how many space treasure
pieces they earned for 1.5 s. Then each piece was converted to points

and added to the total score (100 ms each point). There was a 500 ms
intertrial interval (ITI). Participants completed a total of 256 trials
with an optional short break in the middle.

Before performing the decision-making task, participants were
briefly instructed on its rules and were given practice, but not the spe-
cific transition structure. They were first familiarized with two first-
stage practice contexts and two second-stage practice contexts. Each
of these first-stage contexts was associated with a pair of unique
practice teleporter objects and each of the second-stage contexts
was associated with a single unique space generator object.
Participants learned that in each first-stage state, the teleporter
objects appeared side-by-side and that each led deterministically
to one of the two second-stage planets. Participants then learned
which object led to which second-stage state through practice. We
informed participants that the practice objects and contexts were dif-
ferent from those used in the main task, but that the rules governing
the transition structure would be similar. It is important to note that
the participants did not experience any of the stimuli, or the task
structure, of the main phase for the decision-making task and, that
they were only able to learn it during task performance.

Memory Task

Participants also completed a surprise memory test where they
were shown a pairing of a background image and a pair of objects.
They were asked to indicate whether they saw this pairing before.
Specifically, they were given 5 s to respond on a 4-point scale con-
sisting of “yes, sure,” “yes, unsure,” “no, unsure,” and “no, sure.”
After a 500 ms ITI, a new stimulus/background pairing was
shown. Participants were shown all 16 background/object pairings
they saw in the task (4 for Each Planet x 4 Planets). They were
also presented with “lure” trials designed to test resistance to mem-
ory interference. In 12 of these, participants saw choice objects of
one state presented on a background of another state (i.e., the desert
objects in front of a forest they have seen), which we termed mis-
match trials. In the remaining 16 lure trials, a pair of choice objects
were shown on a new image from each category of background (i.e.,
desert objects in front of a desert they have never seen), which we
termed lure trials. This resulted in a total of 44 trials.

behRSA

We used participants’ relatedness ratings of objects to measure the
structure of their cognitive maps (Figure 1C and D). Specifically, we
hypothesized that experience with the decision-making task would
yield participants to represent the task structure across three different
levels of abstraction. To test this hypothesis, we compared their
matrices of relatedness ratings to three a priori model matrices,
which reflected these levels of representation of the decision-making
task structure (Figure 2A—C). First, we hypothesized that objects
could become related if they co-occurred in a first-stage state (e.g.,
the two teleporters from the desert first-stage state; Figure 2A).
Even though this representational shift, which we call “visual
co-occurrence,” captures some task structure, it is not useful for
planning since it is unrelated to the consequences of actions.
There is also increased similarity for the two items in the second-
stage states, because we reasoned people would infer they share a
“reward state.” We also hypothesized two forms of representational
shifts that related to the task’s transitions (Figure 2B and C). First, we
hypothesized that first-stage state objects and the second-stage
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Figure 2
Model Matrices and Example Participants

Model matrices

Example participants

Note.

1.0
0.8
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Representational similarity matrices. The top row depicts hypothetical model matrices. The bottom row

depicts sample behRSA data from participants that are well captured by the corresponding model matrix. In each
matrix, each cell corresponds to a similarity measure between two objects (defined by row and column). The diag-
onal cells correspond to self-similarity and are assigned full similarity by default. (A) Visual co-occurrence model of
representational change in which objects that appear together in the same first-stage state become highly similar, and
objects that appear in second-stage states become mildly similar. (B) Direct item association model of representa-
tional change where first-stage objects become more similar to the second-stage item they lead to. (C) Indirect item
association model where first-stage objects that all lead to the same second-stage state become more similar to each
other. (D) Example participant with high visual co-occurrence model fit. (E) Example participant with high direct
item association model fit. (F) Example participant with high indirect item association model fit. behRSA = behav-

ioral representational similarity analysis. See the online article for the color version of this figure.

objects they lead to would become related (i.e., the teleporter from
the desert that led to the red planet and the red planet’s generator).
This representation, which we call a “direct item association,” allows
for planning from a first-stage action to the related second-stage
state. Finally, we hypothesized that all first-stage objects leading
to the same second-stage state would become related. We call this
representation an “indirect item association,” because it encodes
relations between objects that never occurred on the same trial.
Critically, these indirect associations would indicate that participants
are abstracting beyond immediate experience in a way that goes
above a simple understanding of action-outcome contingencies in
the task. Note that these model matrices differ in the degree to
which they reflect associations that are useful for goal-directed con-
trol. Specifically, the direct outcome association and the indirect
item-outcome models encode the consequences of choices, whereas
the visual co-occurrence model encodes a more superficial aspect of
the task that does not reflect such higher-order structure.

For each model matrix, cells that reflect the hypothesized related-
ness relationship were coded as 1, and cells that did not were coded
as 0 (with the exception that the two second-state stages were coded
as 0.5 with relation to one another in the visual co-occurrence
model, due to shared “reward state”). It is important to note that
these model matrices are agnostic to the identity of specific objects
in the task structure, because these were randomly assigned for each

participant. In sum, each matrix cell indicates a pairwise similarity
rating between two objects, and the hypothesized matrices reflect
three predicted ways in which participants could change their per-
ceived similarity among objects based on learning this task
structure.

We calculated the mean relatedness ratings for each pair of objects
separately for the pre- and posttask ratings. We then subtracted the
pretask means from the posttask means to get a measure of represen-
tational change. Finally, we fit a multiple regression model for each
participant using the three hypothesized models of behavioral simi-
larity, allowing us to extract B coefficient values for each partici-
pant’s data fit to each model matrix:

Participant Similarity Matrix = Bjsual co—occurrence X Visual Co — Occurrence

Model Matrix + Edi,w item X Direct (1)

Item Model Matrix + [gindim( item X
Indirect Item Model Matrix

These three regression coefficients each reflect the strengths of one
of the hypothesized representational shifts.

We also tested whether the task structure was learned differently
for the high-stakes and low-stakes first-stage states. To do so, we
split the model relatedness matrices along high-stakes contexts and
low-stakes contexts and fit separate multiple regression models,
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resulting in six coefficient values per subject (one for the low-stakes
and high-stakes arm for each of the three models). We then sub-
tracted the high-stakes arm coefficient from the low-stakes arm coef-
ficient to provide a difference score (Figure 3B).

RL Model

We used a dual-systems RL model to examine participants’ use of
model-based control (see the online supplemental materials). This
model combines model-free and model-based learning systems
that learn state-action values. The model-free system uses a temporal
difference-learning algorithm to heighten values for actions in
response to positive prediction error and lower values that lead to
negative prediction errors. The model-based learner combines the
transition structure of the task with second-stage model-free values
to plan its first-stage choices. These two learning systems are com-
bined using a weighting parameter (w) bounded between 0 and 1,
where O is fully model-free control and 1 is fully model-based.
The combined system then made choices according to an inverse-
temperature parameter 3 that governed the explore exploit tradeoff
between the two first-stage options, where a value of 0 dictates
pure exploitation and higher values result in more exploration and
value insensitivity. The model also included a learning-rate a that
governed updates to stored values after rewards, an eligibility trace
parameter A that controls how the outcome at the second stage
informs the first-stage, parameters © and p which capture persevera-
tion on either response or stimulus choice, and finally n and k which
determine transition-matrix updates.

We used maximum a posteriori estimation to fit this dual-system
RL model to behavior on this task (see online supplemental materials
for more details). The estimation method used empirical priors pre-
viously reported by Bolenz et al. (2019).

We would like to note that the mixture model simply describes the
relative strength of the two systems across trials, and should not be
interpreted as a strict description of trial-level behavior. When par-
ticipants use model-based control on a larger proportion of trials,
their fitted mixture parameter w increases.

Exploratory Principal Components Analysis (PCA)

In addition to the a priori model matrices described above, we
were also interested in using a more data-driven approach to capture
structure in relatedness ratings. Therefore, we used a PCA to recon-
struct the data-driven model matrices that would describe the most
shared variance among the participants. To do this, we first flattened
into a vector the entries of participants’ representational similarity
matrix that are below the main diagonal. These vectors were com-
bined into a Subject x Data Matrix which we extracted the principal
components using singular value decomposition. This plot indicates
which of the principal components explain more than 5% of the var-
iance, which were the first three principal components in our data.
We then took each of these components and remapped them into
the original symmetric matrix, and visually inspected them to get
an assessment of what the representational change along that princi-
pal component dimension (Figure 4A).

Exploratory Multidimensional Scaling Analysis

As a complement to the exploratory PCA, we also performed a
multidimensional scaling analysis on the change from pre- to

postexposure representational similarity ratings for each participant.
To do this, we first computed matrices of the change in similarity rat-
ings from pre- to postexposure for participants. Then, after removing
the diagonal, we computed the average change for each item across
all participants, resulting in a single 10 x 10 similarity matrix that is
symmetrical around the diagonal. Next, we submitted this similarity
matrix into MATLAB’s mdscale.m function, requesting a multidi-
mensional scaling solution over two dimensions. In short, this tech-
nique provides co-ordinates in a 2D space for each item, with
Euclidean distances between items revealing subjective task struc-
ture. We then visually inspected these solutions for relationships
among items and with the reward context (Figure 4C).

Analysis of Decision-Task Data

We computed average performance on the decision-making task
as the average number of points earned per trial. To correct for base-
line differences in available reward (as a result of the random
Gaussian walks), we then subtracted the average available reward
across both second-stage states. Participants’ data were also fit
using a RL model (described in RL model).

Analysis of Memory Probe Data

We used the sensitivity index d’ to assess participant’s memory
precision during the memory probe task. To compute this, the first
one obtains the hit rate (H) which is the proportion of target trials
that a subject correctly identifies as old. Next one calculates the
false alarm rate (') which is the proportion of lure trials that a subject
incorrectly identifies as old. Then, the d’ measure is calculated as the
following equation, d' = z(H) — z(F), where z(X) is the z score. We
used this equation to calculate two separate d’ measures, one for lure
trials and one for mismatch trials. The first was calculated using a
false alarm rate for true lure trials, which we call d'y,.. The second
was calculated using a false alarm rate from the mismatch trials, we
called this d ismarch- We calculated these measures separately for
high- and low-stakes contexts. The d pismaen Value was then com-
pared for the high- and low-stakes contexts using a paired-sample
t test.

Transparency and Openness

The data for this study are publicly accessible (at https:/www
.github.com/cdml-lab/mb-cog-maps-paper). The code is also pub-
licly accessible (at the same link). Most of the materials are publicly
available here (https:/osf.io/hr4qk/), however, we are unable to share
the novel object stimuli since we did not get permission from the
original creators. Our study’s design, hypotheses, and analysis
plan were preregistered here (https:/osf.io/uw3p7).

Results

We combined a RL task with behRSA to measure how experience
and motivation influence the representation of task structure.
Participants (n = 161) performed pairwise similarity ratings on 10
novel objects before and after encountering them in a sequential
decision-making task that distinguishes model-free and model-
based control (Figure 1). Importantly, we used a variant of this
task that is designed such that increased use of model-based control
is linked to increased performance (Kool et al., 2016). This is a
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Figure 3
Model Matrix Fits
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Note. (A) Participants’ model matrix fits for the three hypothesized models. Model matrix fit is calculated using a

multiple regression that produces three coefficients for each participant, one for each hypothesized model. All three
of the models are represented within the sample. (B) Participants on average show a higher degree of indirect item
association for the high-stake versus low-stake context. * represents p < .05, error bars are 95% CI. behRSA =
behavioral representational similarity analysis; CI = confidence interval. See the online article for the color version

of this figure.

preregistered replication of a prior experiment (see Methods: Cohort
1 in the online supplemental materials).

Model-Fitting Results

Mirroring prior work (Daw et al., 2011; Kool et al., 2017), we
found that participants’ behavior reflected a mixture of model-free
and model-based control (mean w = 0.57). This suggests that partic-
ipants learned an internal representation of the task, a cognitive map,
and that they used this for goal-directed decision-making.

Behavioral Representational Similarity Analysis (RSA)

At the group level, participants judged item similarity in a manner
consistent with each of the three model matrices (example subjects
with strong fits to each coefficient can be seen in Figure 2D-F,
respectively). As depicted in Figure 3A, participants judged objects
as more related when they had occurred in the same first-stage state,
1(160) =4.64, p <.001, d=0.37, when they constituted a pair
where one object transitioned to the other, #(160) = 5.98, p <.001,
d=0.47, and when they both led to the same second-stage state,
1(160) = 5.29, p <.001, d = 0.42. In other words, all three hypoth-
esized components of the task were represented at the group level.

Exploratory Data-Driven Analyses

Next, we conducted a data-driven test of whether our hypothe-
sized components captured the primary patterns that emerged
from the relatedness ratings. We performed a PCA on the

aggregate behRSA data and inspected the three dimensions that
described the most variance (Figure 4A). The results were largely
consistent with our hypothesized relationships. The first principal
component corresponded to a mixture of our models of direct and
indirect item association. The second corresponded to a combina-
tion of dissimilarity of co-occurrence, coupled with increased
similarity for the direct and indirect item associations. Finally,
the third principal component resembled a combination of
increased similarity for visual co-occurrence and direct item asso-
ciations. This provides strong support for our predicted represen-
tations of task structure.

We also performed a multidimensional scaling analysis
(Figure 4C), so as to assess the relationship between items in a
reduced, 2D, similarity space. This analysis revealed several
interesting relationships. First, we observed that items that did
not share a relationship with a goal state were separated along
the primary dimension. Second, we observed that the reward con-
text drove representational distance along the secondary dimensions,
with stimuli from high-reward contexts fitting closer to the goal-state
than stimuli from low-reward contexts. These findings mirror not only
the primary behRSA measures reported above, but also their interac-
tion with reward-context described below.

Representations of Task Structure Correlate With Task
Performance and Model-Based Control

If the behRSA results reflect different aspects of a cognitive
map, and cognitive maps enable planning, then individual
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Figure 4
Exploratory Analysis of Similarity Ratings
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Note. (A) Inspecting the first three principal components of participants’ behRSA data we find that the principal
component that drives the most variance (Principal component 1) is similar to an equal mixture of our a priori direct
and indirect item association models. The second principal component reflects a mixture of a negative similarity for
object’s visual co-occurrence combined with indirect and direct item associations. Finally, the third principal com-
ponent is a mixture of direct item association and visual co-occurrence models. Color bar depicts similarity structure
in arbitrary units. (B) Simplified task figure representation. (C) Multidimensional scaling visualization of overarch-
ing principles in participant behRSA. The teleporters from the high-stakes contexts are clustered close to their respec-
tive second-stage generators. The teleporters from the low-stakes contexts are further out along Dimension 2. Axes are
arbitrary units. behRSA = behavioral representational similarity analysis. See the online article for the color version of

this figure.

differences in these representations of similarity structure
should correlate with task performance (average reward rate)
and reliance on model-based control (Figure 5). We predicted
positive correlations for aspects of the task structure that are
important for goal-directed planning, but not for lower-order
relationships.

Consistent with our hypotheses, we did not observe a relation-
ship between performance (i.e., points earned in the task) and the
strength of the visual co-occurrence component, 7(159) =.004,
95% CI [—-0.15, 0.16], p =.96. However, we found that perfor-
mance was positively correlated with the encoding of direct
item associations, r(159) =.32, 95% CI [0.18, 0.46], p <.001
and indirect item associations, r(159)=.45, 95% CI[0.31,
0.56], p <.001.

Next, we found a trending but nonsignificant negative correlation
between model-based control and the strength of the visual
co-occurrence component, #(159) = —.14, 95% CI[-0.29, 0.01],
p =.0753. Critically, however, we found that the use of model-based
control was positively correlated with the encoding of direct item
associations, r(159) =.33, 95% CI [0.18, 0.46], p <.001, and indi-
rect item associations, #(159) = .48, 95% CI[0.35, 0.59], p <.001.

In order to assess the difference in strength between these correla-
tions, we ran a series of Williams’ tests to compare them. First, we
compared the correlations of the model matrix fits with the

performance measure (points earned) The correlation between points
earned and visual co-occurrence was weaker than its correlation with
the indirect item association, Williams’ #(158) = —4.39, p < .001,
and direct item association, Williams’ #(158) = —3.67, p <.001.
Also, its correlation with indirect item association was weaker than
its correlation with the direct item association, Williams’ #(158) =
2.10, p = .036.

We also performed these tests for the correlations between model-
based mixture weight w and the behRSA parameters. Its correlation
with visual co-occurrence was weaker than its correlation with the
indirect item association, Williams’ #(158) = —2.4670, p <.001,
and the direct item association, Williams’ #(158)= —5.5955,
p <.001. Again, its correlation with the indirect item association
was weaker than its correlation with the direct item association,
Williams® #(158) = 2.4670, p = .0143. Thus, for both points earned
and estimates of model-based control, we found the strongest link
to the most abstracted components of the cognitive map.

Inspired by a reviewer’s comments, we also performed a series of
multiple linear regressions to account for shared variance among the
different portions of participants’ cognitive maps. First, a linear
regression was conducted to examine the relationship between per-
formance in the decision-making task and participants’ behRSA
matrix components. The model included 161 observations and had
an R? of 203 and an adjusted R? of .188. The results indicated a
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Figure 5

Model-Based Representations Correlate With Decision-Making Task and RL Model
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ment learning; behRSA = behavioral representational similarity analysis. See the online article for the color version of this figure.

*p <.05.

significant positive relationship between performance in the
decision-making task and the indirect item association component
of participants’ behRSA, b= 0.013, SE= 0.003, #(157) =4.118,
p < .001. There were no significant relationships between task per-
formance and direct item association, b= 0.003, SE= 0.003,
1(157) = 0.879, p = .381. Visual co-occurrence also had no signifi-
cant relationship with task performance, b = —0.001, SE = 0.003,
t(157)=—0.287, p=.774. These results indicate that when
accounting for the shared variance between direct and indirect item
association, we no longer observe an effect of direct item association.

We also conducted an analogous linear regression to examine the
relationship between w and participants’ behRSA matrix compo-
nents. The model included 161 observations and had an R* of
254 and an adjusted R? of .240. The results indicated a significant
positive relationship between w and the indirect item association
component of participants’ behRSA, b= 0.100, SE=0.024,
t(157)=4.224, p < .001. There were no significant relationships
between w and direct item association, b = 0.037, SE= 0.025,
t(157)=1.492, p = .138. In this model, visual co-occurrence had

a significantly negative relationship with w, b= —0.048, SE=
0.018, #(157) = —2.446, p = .016. This contrasts with the correla-
tional version of the analysis that only found a trending negative
relationship between visual co-occurrence and w. We take this
to potentially stem from the fact that the teleporters that share
the same first-stage state lead to completely independent reward out-
comes so treating them as very dissimilar may be helpful. Knowing
that RL model parameters are often correlated, we ran further linear
models that are reported in the Linear Models in the online supple-
mental materials. Their outcomes do not qualitatively change the
results reported here. Ultimately, these analyses further bolster the
relationship between performance, model-based control, and abstracted
cognitive maps that can be used to plan toward goals.

In sum, the encoding of higher-order representations of task struc-
ture—such as a first-stage item to its second-stage counterpart, or two

! Pearson’s r was preregistered for these analyses, but results do not differ
when using Spearman’s p [nonparametric].
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first-stage items that lead to the same second-stage item—enabled goal-
directed planning toward goals, whereas representations of low-level
features such as item co-occurrence did not. In our regression analyses,
only the indirect item association is a positive predictor of task perfor-
mance and planning. This seems to be due to collinearity in the direct
item and indirect item association portions of participants’ cognitive
maps. Furthermore, in the case of our regression analyses representation
of low-level features such as item co-occurrence seems to hinder plan-
ning. Taken together, these results suggest that the behRSA approach
captures the construction of internal representation of the transition
structure, the cognitive map, and the individual differences in its fidelity.

Motivation Affects Representational Change

In order to test the effect of motivation on cognitive map construc-
tion, we tested whether people used differential amounts of model-
based control during the different stake conditions. Replicating prior
work (Bolenz et al., 2019; Kool et al., 2017; Patzelt et al., 2019;
Smid et al., 2023) model-based control was increased on high-stakes
trials (mean wy;gn = 0.56) compared to low-stakes trials (Wigw =
0.54), F(1, 160) = 6.83, p = .008, see Methods in the online supple-
mental materials: Stake x Arm ANOVA.

Importantly, two first-stage states were associated with a high
probability of a high-stakes trial (80%; high-stakes context), and
the other with a low probability (20%; low-stakes context). We
sought to understand whether the difference in incentives between
contexts affect the representation of task structure. We predicted
that aspects of the task related to higher-order structure—both direct
item associations and indirect item associations—would be more
strongly encoded for the high-stake compared to the low-stake con-
text items (Figure 1A).

To test this, we ran new multiple linear regressions, estimating the
coefficients separately for each stake context. We found no differ-
ence between the high- and low-stake context representations of
visual co-occurrence, #(160) = 0.45, p = .65, d =0.04 (Figure 3B).
We found a nonsignificant trend toward a context-driven difference
in the direct item-outcome representations, #(160) = 1.74, p = .08,
d=0.14. However, the indirect item associations were encoded
more strongly for the high-stakes context compared to the low-stake
context, #(160) =3.22, p =.0015, d = 0.25. These results indicate
that incentives lead to stronger representations for goal-directed
information in task structure.

Memory for Object-Background Pairings Is Better in
Higher-Stakes Contexts

Finally, we predicted that enhanced encoding of the task structure
in the higher-stakes context would also enhance encoding of periph-
eral elements of trials in this condition. Therefore, we tested partic-
ipants’ memory of the object-background pairings encountered in
the first stage of the two-step task. Some of these pairings were
indeed encountered before (targets), but others consisted of two first-
stage objects on a new exemplar from the correct background cate-
gory (lures), or two first-stage objects on a background from a differ-
ent first-stage state (mismatch). The mismatch trials probed highly
specific memory for episodically bound object-scene pairs, because
participants had encountered all of that information during the task.
For each trial, participants indicated whether they had seen that com-
bination of object and background before (Figure 6).

To test this, we computed d’ sensitivity scores separately for the
lure and mismatch trials. We found no effect of incentive condition
for the lure trials (t = 0.82, p =.4152). For the mismatch condition,
however, discrimination was higher for high-stakes compared to
low-stakes trials (r =2.29, p =.0234; Figure 3). This suggests that
components of the task—even for elements that were incidental to
maximizing reward—were better learned in high-stakes contexts.
In particular, incentives drove enhanced memory for highly specific
item-in-context information.

Discussion

Understanding the cognitive mechanisms underlying goal-
directed planning is fundamental to the study of human behavior
(Botvinick & Toussaint, 2012; Daw et al., 2011; Decker et al.,
2016; Dolan & Dayan, 2013; Mattar & Lengyel, 2022; Tolman,
1948; van Opheusden et al., 2021; Wilson et al., 2014). Here, we
aimed to measure one of its key components: the internal represen-
tation of task structure, also known as the cognitive map. We aimed
to measure these representations at a large scale using a purely
behavioral approach. To do this, we developed a novel behavioral
variant of RSA to determine different sources of variability in how
cognitive maps are constructed. Specifically, participants told us
how related they thought the choice options they encountered in a
sequential decision-making task were. Next, we correlated their rat-
ings with three a priori hypotheses about how one might infer task
structure. This allowed us to assess to which degree participants’
cognitive maps reflected both more superficial and higher-order
components of task structure. Strikingly, the principal ways in
which participants’ relatedness ratings varied were largely accounted
for by our predicted models. Participants tracked aspects of task
structure irrelevant for planning, such as which choice options
merely co-occurred. More importantly, they also tracked compo-
nents of the task that reflect its higher-order nature, such as which
options are directly and indirectly linked through the transition
structure.

Consistent with the idea that these relatedness ratings allow
insights into cognitive maps, we found that participants whose rat-
ings reflect the higher-order structure showed increased deployment
of model-based control and better performance on the decision-
making task. In contrast, planning-irrelevant components (such as
item co-occurrence) did not relate to strategy selection or task perfor-
mance. Moreover, the representations of indirectly related associa-
tions were more strongly present in contexts with increased
incentives, further indicating the relevance of these cognitive maps
for goal-directed control. The relationship between a first-stage
item and the item encountered in the subsequent reward state is
more complex than mere co-occurrence in the two-step task.
However, one might nonetheless take this kind of representation to
indicate that participants simply understand the task’s transition
structure. In contrast, the representation of indirect associations sug-
gests not only an understanding of basic causality in the task, but
also mapping out the space of possibilities in a more abstract

% Note that these estimates of model-based control are lower than the esti-
mate obtained from the single-parameter model. This happens because only a
quarter of the data contributes to each of the four model-based weighting
parameter estimates, and therefore the prior (with a mode at 0.5) has a stron-
ger influence on the estimates.
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Figure 6
Posttask Surprise Memory Probe
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indicating that mismatch trials involving high-reward context backgrounds
were easier to discriminate than mismatch trials involving low-reward con-
text backgrounds. This effect is not seen in the lure d' sensitivity scores
where low- and high-reward context backgrounds are equally discrimina-
ble. * represents p < .05, error bars are 95% CI. CI = confidence interval.
See the online article for the color version of this figure.

sense. Importantly, this more abstract mapping is not merely a given
for individuals who perform well at the task. That is, such a represen-
tation goes beyond immediate action-outcome relationships and sug-
gests that some participants are linking across indirectly related
experiences. Together, these findings suggest that structured repre-
sentations of a task are used to guide planning toward decisions.

Probing the Cognitive Map Using behRSA

The last decade has seen an explosion of research on how humans
exert model-based control, often relying on variants of the two-stage
task and the dual-system RL model that we used here (Bolenz et al.,
2019; Daw et al., 2011; Kool et al., 2016, 2017; Patzelt et al., 2019;
Smid et al., 2023). Even though the insights from this field of research
have been rich, this approach does not typically probe the cognitive
map. First, in the majority of studies, it has either been assumed or
ensured that the structure of a task was fully learned (e.g., Kool
et al., 2017). Second, behavior in this class of tasks does not lend
insight into the structure and task relevance of the cognitive map a par-
ticipant has constructed. As a consequence, prior work has overlooked
these representations as important sources of variance (but see Feher
da Silva et al., 2023; Feher da Silva & Hare, 2020). Our behRSA
approach complements and builds on this prior work. Despite partic-
ipants having to learn the transition structure during task performance
of the decision-making task and receiving minimal instruction during
the behRSA task, we nonetheless found that their relatedness ratings

revealed components of the task structure. Critically, these representa-
tions—particularly for abstractions about task structure—correlated
with goal-directed control.

Representations of task structure may be learned through caching
predictions about state transitions; a RL algorithm called the successor
representation operates on this assumption. Though the successor rep-
resentation has been supported by direct evidence in behavioral and
neuroimaging work in humans (Momennejad et al., 2016; Russek
et al., 2021) it does not account for other findings invoking a cost of
structure learning (Collins, 2017). In addition to this, the successor rep-
resentation does not predict the existence of “indirect” relations
between items that share a second-stage goal. For example, agents
may use probabilistic reverse inference (Solway & Botvinick, 2012;
Solway et al., 2014) over their successor representations to infer indirect
associations between choice options, allowing them to build up sophis-
ticated cognitive maps from cheaply formed cached transition counts.
This leads to the intriguing possibility that map construction occurs
by switching between two distinct modes. In line with this idea, we
found that participants more strongly represented goal-directed compo-
nents of the task structure for regions of the transition structure where
increased stakes were more likely. This suggests that indirect structure
learning in our two-step task also imposed a cost, since participants
became more willing to encode the full extent of the transition structure
when it paid off more. This is not to say that the relationships were not
encoded in the low-stakes contexts, more so that increased stakes fur-
ther increased representational similarity among goal-relevant items.
Future work may investigate what learning signals the brain uses to
determine whether to engage in more extensive structure learning,
and whether these two tradeoffs are truly parallel or rely on similar esti-
mations of the value of model-based control.

Individual Differences in Cognitive Map Formation

Our behRSA results demonstrate that there exists substantial vari-
ability in the degree to which participants represent the structure of
our decision-making tasks. Recent work by Feher da Silva and Hare
suggests similar variability in a more conventional two-stage decision-
making paradigm, which is reduced when participants are guided
through a more thorough explanation of the structure of their task
(Feher da Silva & Hare, 2020). In other words, constraining the
space of possible cognitive maps increases the engagement of success-
ful model-based control. By providing only instructions on the rules of
the paradigm but leaving the exact transition structure unspecified, our
behRSA technique allowed us to measure individual differences in the
formation of cognitive maps. This flexibility may be particularly
important when linking model-based decision-making to broader
aspects of cognition. In particular, learning and reasoning over rela-
tional maps may be linked to the deployment of model-based control
in naturalistic scenarios in which the structure is neither known nor
instructed. In accordance with this idea, recent work by Rmus and col-
leagues found a link between the deployment of model-based control
and general mapping ability (Rmus et al., 2021). In their work, perfor-
mance in a separate graph learning task positively predicted the use of
model-based control in the two-step task. One benefit from our, more
direct, approach is that it probes the cognitive map underlying deci-
sions within the task itself. One promising area for research would
be to investigate whether general mapping ability explains the observed
differences in higher-order structure learning, which then in turn
explains reliance on model-based control. In other words, we predict
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that structure learning in the two-step task mediates the previously
observed relationship between general mapping ability and the use
of model-based control.

Limitations and Future Directions

Following the issue of variability, we would like to note that there
was a fair amount of heteroskedasticity in whether participants gen-
erated task-related representational similarities. One of the reasons
for this may be that some participants lost interest in providing rat-
ings for pairs of objects as the task continued. Indeed, it should be
noted that data collection occurred at the height of the coronavirus
pandemic. It is also possible that we observed some form of retroac-
tive interference of the behRSA task on the task structure. That is,
after viewing and rating many of the possible pairings of objects,
the strength of some of the previously observed relationships may
have weakened. Finally, it is possible that some participants strug-
gled with the relatively sparse nature of the behRSA instructions.
We do note, however, that the results reported here are preregistered
and replicate effects found in an initial sample, predicting
task-related behavior after task completion. Interestingly, a
follow-up exploratory sample of participants who were given a slight
nudge during the behRSA phase (in terms of the task, how related do
you think these objects are?), indeed showed stronger fits to our
hypothesized model matrices, and stronger correlations between
these fits and model-based control (Figures S3 and S4 in the online
supplemental materials). It should be noted that we found stronger
representations not just for the planning-related components, but
also for the planning-unrelated co-occurrence component. This sug-
gests that participants believed that this relationship was relevant to
the task (even though by design this feature was not relevant to plan-
ning). Recent work using a value-guided construal model has high-
lighted that participants forget aspects of tasks that are not goal
relevant (Ho et al., 2022). These findings seem to stand at odds
with each other. A key difference between these investigations,
though, is that participants in our task were repeatedly exposed to
the planning-unrelated information, whereas the same goal-
irrelevant aspects were only encountered once in the study by Ho
et al. (2022). One possible explanation here is that the repetition
of pairs of objects in the same first-stage states let them to be encoded
through some form of statistical learning (Schapiro & Turk-Browne,
2015). Future research can further disentangle these mechanisms.

Another relationship we observed in our data is an enhancement
of item-context recognition memory in high-reward contexts. On
the one hand, it is reasonable to assume that a rich cognitive map
would incorporate all potentially useful information in guiding deci-
sions (Behrens et al., 2018). On the other hand, we note that the
backgrounds used in this study were in fact irrelevant to participants’
choices. That is, model-based decisions could be made purely on the
basis of objects alone. Though a full understanding of this effect
would require future work aimed at studying the relationship in
detail, we speculate that reward drives stronger contextual encoding
as a means of incorporating any potentially informative features into
the representation. Indeed, prior studies show that reward states drive
contextual coding (Wolosin et al., 2013) and modulate map-like rep-
resentations (Garvert et al., 2023).

We note that there has been recent debate as to the accuracy of the
dual-systems model as an accurate account of behavior both in this task
and in general (Collins & Cockburn, 2020; Feher da Silva et al., 2023).

While it is beyond the scope of this study to weigh into this debate, we
acknowledge that ascribing model-based versus model-free systems to
behavior in the task may not fully capture the scope of factors driving
performance. Importantly, we used this paradigm to simply investigate
the degree to which people rely on planning after learning the model of
a task. We believe that the forward simulation of action in this task is
sufficient to assess participants’ planning behaviors using RL tech-
niques. Indeed, previous work has used similar methods to demon-
strate that participants engage in less planning (driving down w)
when they decide to expend less effort for reward- and
complexity-related reasons (Kool et al., 2017, 2018).

Though the behRSA approach is useful for behaviorally assessing
participants’ models and even useful for assessing the cost of structure
learning, future work is needed to assess the underlying neural corre-
lates that are allowing for map construction. In line with prior work
(Schlichting et al., 2015; Schuck et al., 2016), we believe medial pre-
frontal cortex, orbitofrontal cortex, and hippocampus are the primary
regions involved in building and using representations for our task.
Relatedly, in this article, we have mainly demonstrated that participants
are constructing and using their maps, but are unable to speak to how
participants are doing this “online.” Neuroimaging approaches are well
suited to repeatedly probe representations of choice options. Another
outstanding issue is the degree to which neural and behavioral RSA
provide complimentary (or unique) sources of information. This com-
parison would provide increased understanding of the connection
between reported mental and specific circuit representations, as well
as the degree to which these representations are explicitly accessible.

Summary

Our findings demonstrate that it is possible to behaviorally assess the
features of participants’ cognitive maps. Higher-order features of these
cognitive maps predict the use of model-based control and performance
in an established decision-making task. Finally, the quality of these
abstract cognitive maps is enhanced by the presence of higher reward,
indicating that they are flexibly built and used in pursuit of goals.

Constraints on Generality

This article, and the supplement, report results from three studies.
For the study reported in the main text, participants were recruited on
Amazon Mechanical Turk using CloudResearch. For the pilot study
and the “instruction change” study, we recruited participants from
the Washington University in St. Louis subject pool. Therefore,
we demonstrated the existence of these effects in a university partic-
ipant pool, as well as in a broader sample of healthy younger adults
in the United States. We have no reason to believe that the results
depend on the specific materials or the task context, or that they
would not replicate in other sensory domains. It is possible that
the cognitive mechanisms producing these effects are altered in
more diverse groups of people, such as during development, across
aging, or in more neurodiverse samples. This provides interesting
avenues for future research.
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