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Supplementary Methods 

 

Reinforcement learning model 
We adapted an established hybrid reinforcement learning model that we used in prior 
work to assess participants’ behavior in the decision-making task, specifically 
dissociating model-free and model-based decision making. Every trial 𝑡 started out in 
one of two first-stage states "𝑠!,#$ where one of two possible actions 𝑎$ and 𝑎% could be 
selected "𝑎!,#$. Depending on their selection, the participant deterministically 
transitioned to one of two second-stage states "𝑠&,#$ where they could perform only one 
action "𝑎&,#$ and then obtain a reward (𝑟#). The model described here contains both a 
model-free learner and a model-based learner that learn expectations of long-term 
future reward 𝑄(𝑠, 𝑎) for each combination of state and action. The model-free system 
learns reward expectations for each of the four teleporters and two generators, by 
updating their values based on reward prediction errors. The model-based system, on 
the other hand, learns a transition structure that represents to which planet each 
teleporter leads. It then combines this with the model-free reward expectations of the 
terminal, second-stage states to select between teleporters.  

Model-free system 

All model-free reward expectations were instantiated with a reward expectation of 4.5 
(arithmetic mean of minimum and maximum possible reward) for all actions and states. 
The model-free learner would then use the 𝑆𝐴𝑅𝑆𝐴(𝜆) temporal difference learning 
algorithm to update its cached reward expectations based on the difference between 
predicted and received rewards. In the decision-making task this resulted in a reward 
prediction error (𝛿) being calculated at each stage according to: 

𝛿!,# = 𝑄'("𝑆&,# , 𝑎&,#$ − 𝑄'("𝑠!,# , 𝑎!,#$
𝛿&,# = 𝑟# − 𝑄'("𝑠&,# , 𝑎&,#$

 

Notice that the second-stage prediction error incorporates the immediate reward 
outcome for that trial, but that the first-stage prediction error only incorporates 
expectations of future reward. The values of each prediction error were then used to 
update the reward expectations of the model-free learner at both the first and second 
stage: 

𝑄'("𝑠!,# , 𝑎!,#$ ← 𝑄'("𝑠!,# , 𝑎!,#$ + 𝛼𝛿!,# + 𝛼𝜆𝛿&,#
𝑄'("𝑠&,# , 𝑎&,#$ ← 𝑄'("𝑠&,# , 𝑎&,#$ + 𝛼𝛿&,#

 

Here, 𝛼 is the reward learning rate (between 0 to 1) that determines how quickly new 
information about rewards is incorporated into the model-free learner expectations. The 



eligibility trace decay parameter 𝜆 (between 0 to 1) determines how much a reward 
prediction error experienced after the second-stage choice changes first-stage reward 
expectations. 

Model-based system 

The model-based system uses the transition structure of the task to flexibly compute 
reward expectations for each available teleporter. Specifically, it has a transition matrix 
𝑇(𝑠!, 𝑎!) that encodes the probability of moving to the second-stage state 𝑠& after 
choosing the action 𝑎! in the first-stage state 𝑠!. In order to compute the model-based 
reward expectations, these probabilities are combined with the reward expectations at 
the second-stage: 

𝑄'%"𝑠!,# , 𝑎!,#$ =6𝑇
)&

"𝑠!,# , 𝑎!,#$𝑄'%(𝑠&, 𝑎&)

𝑄'%"𝑠&,# , 𝑎&,#$ = 𝑄'("𝑠&,# , 𝑎&,#$
 

Choice rule 

The model-free and model-based learners reward expectations in the first-stage states 
are integrated using a model-based weighting parameter 𝑤 (ranging from 0 to 1) using 
the following rule: 

𝑄*+#(𝑠!, 𝑎!) = (1 − 𝑤)𝑄'((𝑠!, 𝑎!) + 𝑤𝑄'%(𝑠!, 𝑎!) 

We then used a softmax function to map the reward expectations to choice probabilities: 

𝑃"𝑎!,# = 𝑎!|𝑠!,#$ =
𝑒𝑥𝑝"𝛽?𝑄*+#"𝑠!,# , 𝑎!$@$

∑ 	, 𝑒𝑥𝑝"𝛽?𝑄*+#"𝑠!,# , 𝑎$@$
 

Here, 𝛽 is the inverse softmax temperature (left-bounded to 0) that determines how 
much influence reward expectations have on choice probabilities and can be thought of 
as a measure of exploration and exploitation. High softmax temperatures mean that the 
model is more likely to explore and low softmax temperatures mean the model more 
commonly exploits its knowledge. 

Due to the tendency of participants to perseverate on choices that are suboptimal we 
added two parameters to capture both response key and stimulus ‘stickiness’. The 
choice stickiness parameter 𝜋 (left unbounded) related to choice perseveration when 
positive and choice switching when negative. The response stickiness parameter 𝜌 
captured perseveration of the response key press when positive and switching of 
response key press when negative. 

𝑟𝑒𝑝(𝑎!) = E1 if 𝑎!,# = 𝑎!,#-!
0 otherwise.

𝑟𝑒𝑠𝑝(𝑎!) = E1 if response for 𝑎!,# = response for 𝑎!,#-!
0 otherwise.

 



With the addition of these perseveration parameters the full choice function is as 
follows: 

𝑃"𝑎!,# = 𝑎!|𝑠!,#$ =
𝑒𝑥𝑝"𝛽?𝑄*+#"𝑠!,# , 𝑎!$ + 𝜋 ∗ 𝑟𝑒𝑝(𝑎!) + 𝜌 ∗ 𝑟𝑒𝑠𝑝(𝑎!)@$
∑ 	, 𝑒𝑥𝑝"𝛽?𝑄*+#"𝑠!,# , 𝑎$ + 𝜋 ∗ 𝑟𝑒𝑝(𝑎) + 𝜌 ∗ 𝑟𝑒𝑠𝑝(𝑎)@$

 

Together this results in a model with 6 free parameters which are fit using a maximum a 
posteriori (MAP) fitting procedure defined below. 

Model fitting procedure 

For each participant we obtained maximum a posteriori (MAP) estimates of the free 
parameters in the model, using custom scripts coupled with the ‘scipy.optimize.minimize’ 
function. All parameters had the following priors: 

𝛼, 𝜆, 𝑤 ∼ Beta(2,2),
𝛽 ∼ Gamma(3,0.2),

𝜋, 𝜌 ∼ 𝒩(0,1).
 

These priors were empirically derived in work by Bolenz and colleagues (Bolenz et al. 
2019). In order to avoid local optima, we randomly initialized the parameters and 
performed the optimization procedure 10 times per participant. We then selected the 
parameters of the run with the highest posterior probability. 

To investigate the degree to which patients and controls altered their use of model-
based control in response to motivational manipulations, we also fit a version of this 
model where a separate 𝑤 parameter was estimated for high-stakes and low-stakes 
trials. The difference between these parameters indicated the degree to which patients 
modulated their control in response to the stakes (Kool, Gershman, and Cushman 2017; 
Bolenz et al. 2019; Karagoz, Reagh, and Kool 2024). 

Parameter Recovery 
Recovery analysis was performed using simulated agents to ascertain whether the 
model fitting could recover ground truth parameters. We used a generative version of 
our model to simulate the behavior of our participants. For each participant, we 
initialized an agent with the parameters we fit for that participant. The agent then 
performed the same set of trials as the original participant. Finally, we used our model-
fitting procedure (as described above) to obtain estimated parameters for each 
simulated agent. We found significant correlations between the true and estimated 
parameters for each parameter with the exception of the response stickiness (𝜌) that 
measured a participants tendency to repeat the left or right response repeatedly. The 
parameters are reported in Supplemental Table 1. 
 
Parameter r(43) 2.5_ci 97.5_ci P-val Sig 
Inverse 
temperature (𝛽) 

0.89 0.8 0.94 0.001 ** 

Learning rate (𝛼) 0.83 0.71 0.91 0.001 ** 
Trace decay (𝜆) 0.68 0.48 0.82 0.001 ** 



Model-based 
control, low stakes 
(𝑤 low) 

0.34 0.05 0.58 0.0242 * 

Model-based 
control, high stakes 
(𝑤 high) 

0.67 0.46 0.81 0.001 ** 

Stickiness (𝜋) 0.81 -0.68 0.89 0.001 ** 
Response 
stickiness (𝜌) 

-0.24 -0.51 0.06 0.115  

Supplemental Table 1: Parameter recovery results 
 
 
 
Model comparison 
 
To assess whether patients and controls were using a simpler decision strategy than 
model-free RL, we ran two variants of a win-stay-lose-switch model.  
 
Perhaps participants are simply choosing the same stimulus each time they come 
across it, and switching away once the reward gained from interacting with that stimulus 
drops below a certain set threshold. To examine this we fit a model where each stimulus 
had a single repeat value (V) which was determined as 1 or 0. If the reward value 
received for that stimulus was below the threshold (set as the mean reward available: 
4.5), the value for that stimulus would become 0 and the value for the other stimulus 
would become 1. On each trial the action was modeled using the softmax decision rule: 
 

𝑃"𝑎!,# = 𝑎!|𝑠!,#$ =
𝑒𝑥𝑝"𝛽?𝑉"𝑠!,# , 𝑎!$@$

𝑒𝑥𝑝"𝛽?𝑉"𝑠!,# , 𝑎!$ + 	𝑉"𝑠!,# , 𝑎&$@$
 

 

This led to a model with a single free parameter (β), equivalent in function to the 
parameter described in the Reinforcement Learning Model section. We also fit a 
variant where the threshold of reward comparison was a free parameter (thresh) for 
each participant. We fit these parameters using a similar model fitting procedure to that 
described above. The value for the β prior was equivalent, whereas the prior for the 
threshold parameter was chosen as 𝒩(4.5,1). When comparing the models using 
Akaike comparison criterion (AIC), one can see that the mixture model reported in the 
main text outperforms the win-stay-lose-switch variants despite being penalized for its 
higher parameter count (Fig S1). We take this as evidence that the participants are not 
using a simple win-stay-lose-switch strategy.  

 



 
Figure S1: Model comparison for the mixture model reported in the main text with the 
win-stay-lose-switch variants. The mixture model has lower AIC for both patients and 
controls. 
 

Previous pilot sample 
In the supplement of Karagoz et al. 2024, we reported the results of a follow-up 
experiment using the same instruction set in the behRSA task that we use in the main 
text here. We recruited 78 healthy younger adults from the Washington University in St. 
Louis SONA research pool. We excluded 5 participants for responding to fewer than 
80% of the trials in the decision-making task. We also excluded two participants 
because of missing data in their behavioral representation similarity task. This left us 
with an effective sample of 71 younger adults (36 Male, 33 Female, 2 declined to 
answer). Due to a coding error, we did not save the ages of these participants. 
However, it is highly likely that their age range and median age were similar to the data 
in Karagoz et al. 2024.  

 

 

 

 

 

 

 



 
Supplementary Results 

 
Points earned by stake in both groups: 

 
Figure S2: Points earned in the different stake condition for both the patients and 
controls. The data in this plot are the same to produce the plot Figure 2C. Errorbars are 
standard error of the mean. 
 
Model-based control and performance with inverse temperature: 
 
We found an interesting dissociation between performance and model-based control in 
our clinical sample. We hypothesized that this might be explained by the inverse 
temperature parameter (b) which governs the degree to which participants exploit their 
knowledge of rewards. Though we found no evidence of differences in the parameter 
between our control and clinical sample, we sought to investigate if there was a deeper 
moderative effect of b on the relationship between w and performance (as measured by 
points earned). To do this we ran a linear model of the following form: 
 
Points Earned ~ w x b x Clinical Group 
 
We found no evidence of moderation and when incorporating both w and b we no 
longer had a main effect of either. 
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept -0.286 -0.962 0.389 0.333 35 -0.86 0.396  
w 0.551 -0.68 1.782 0.606 35 0.909 0.37  
b 0.168 -0.211 0.546 0.187 35 0.898 0.375  
w : b -0.076 -0.715 0.563 0.315 35 -0.241 0.811  



Clinical 
Group 

-0.09 -1.022 0.841 0.459 35 -0.197 0.845  

w : 
Clinical 
Group 

0.137 -1.648 1.922 0.879 35 0.156 0.877  

b : 
Clinical 
Group 

0.111 -0.344 0.566 0.224 35 0.496 0.623  

w:b : 
Clinical 
Group 

-0.128 -0.962 0.705 0.411 35 -0.312 0.757  

 
Table S2: Points Earned ~ w x b x Clinical Group estimates. 
  
 
Model-based control by behRSA  
 
In line with our prior work (Karagoz, Reagh, and Kool 2024), we hypothesized that 
planning relevant features such as the direct and indirect item associations would 
predict use of model-based control. We wondered if this effect differed across the 
clinical groups. To this end we ran a linear model of the following form: 
 
w ~(Visual Co-occurrence + Direct Item Association  + Indirect Item Association x 
Clinical Group 
 
We did not find a main effect of either direct item or indirect item associations as we 
have previously reported (Karagoz, Reagh, and Kool 2024). There was also no 
evidence of an interaction. 
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept 0.549 0.438 0.659 0.055 35 10.063 0.0 *** 
Visual Co-
occurrence 

0.003 -0.002 0.008 0.003 35 1.132 0.265  

Direct Item 
Association 

0.002 -0.001 0.005 0.002 35 1.119 0.271  

Indirect Item 
Association 

-0.0 -0.003 0.003 0.002 35 -0.182 0.857  

Clinical Group -0.043 -0.214 0.128 0.084 35 -0.506 0.616  
Visual Co-
occurrence:Clinical 
Group 

-0.002 -0.008 0.005 0.003 35 -0.474 0.638  

Direct Item 
Association:Clinical 
Group 

-0.005 -0.01 0.001 0.003 35 -1.608 0.117  



Indirect Item 
Association:Clinical 
Group 

0.003 -0.001 0.008 0.002 35 1.432 0.161  

 
Table S3: w ~(Visual Co-occurrence + Direct Item Association  +Indirect Item 
Association x Clinical Group 
 
 
MAP-SR and Snaith-Hamilton 
 
Along with the associations reported in the main text we reasoned that hedonic capacity 
as measured by the Snaith-Hamilton, and motivation as measured by MAP-SR, would 
predict other features in the task. To this end we ran a series linear models looking at 
the effects of the above self-report measures on the modulation of control and 
performance in stakes conditions. We also wanted to assess whether either of these 
measures predicted participant cognitive maps. 
 
Snaith and MAP-SR on stakes control modulation: 
 
First, we ran a linear model to assess the effect of self-report measures on the 
modulation of control in high vs low stakes contexts and to see whether this was 
different across clinical groups. We ran a model of the following form: 
 
Difference in w ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
We found no significant main effects for either of the two self-report measures as well as 
no significant interactions. This indicates that though increased hedonic capacity seems 
to be coupled with decreased use of model-based control in individuals with 
schizophrenia (as reported in the primary results), it does not predict their modulation of 
that control. 
  
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept 0.091 0.017 0.165 0.037 37 2.477 0.018 * 
Snaith-Hamilton 0.023 -0.066 0.113 0.044 37 0.526 0.602  
MAP-SR -0.023 -0.099 0.053 0.038 37 -0.619 0.54  
Clinical Group -0.058 -0.163 0.047 0.052 37 -1.111 0.274  
Snaith-
Hamilton:Clinical 
Group 

-0.069 -0.184 0.045 0.056 37 -1.233 0.225  

MAP-SR:Clinical 
Group 

0.077 -0.03 0.185 0.053 37 1.465 0.151  

 
Table S4: Difference in w ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
Snaith and MAP-SR on stakes performance modulation: 
 



We also sought to assess whether the direct modulation of performance in the high 
compared to low stakes was linked to our self-report measures. To this end we ran a 
linear model of the following form: 
 
Difference in points ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
We found a significant main effect of the Snaith-Hamilton, indicating that higher hedonic 
response was coupled with more high-stakes enhancement of performance in controls. 
We also found a significant interaction with Snaith-Hamilton measure and clinical group 
such that increased hedonic response was not coupled with increased performance 
enhancement. 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept 0.13 -0.071 0.33 0.099 37 1.311 0.198  
Snaith-Hamilton 0.296 0.055 0.537 0.119 37 2.491 0.017 * 
MAP-SR 0.072 -0.134 0.277 0.101 37 0.708 0.483  
Clinical Group -0.099 -0.382 0.184 0.14 37 -0.707 0.484  
Snaith-
Hamilton:Clinical 
Group 

-0.326 -0.633 -0.018 0.152 37 -2.146 0.039 * 

MAP-SR:Clinical 
Group 

0.045 -0.244 0.334 0.143 37 0.316 0.754  

 
Table S5: Difference in points ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
Snaith and MAP-SR on direct item association: 
 
After assessing the degree to which our self-report measures predicted modulations of 
task performance and control, we sought to assess their relationship with aspects of 
participant cognitive maps. First, we assessed whether our self-report measures were 
related to participant use of direct item representations. To do this we used a linear 
model of the following form: 
 
Direct Item Association ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
We found no effect of our self-report measures on the amount direct item association in 
participant cognitive maps. 
  
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept 16.43 -0.95 33.809 8.57

7 
37 1.915 0.063 . 

Snaith-Hamilton 10.477 -10.431 31.386 10.3
19 

37 1.015 0.317  

MAP-SR -11.813 -29.614 5.988 8.78
5 

37 -1.345 0.187  

Clinical Group -1.256 -25.79 23.277 12.1
08 

37 -0.104 0.918  



Snaith-
Hamilton:Clinical 
Group 

-10.054 -36.719 16.612 13.1
6 

37 -0.764 0.45  

MAP-SR:Clinical 
Group 

3.216 -21.832 28.264 12.3
62 

37 0.26 0.796  

 
Table S6: Direct Item Association ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
 
Snaith and MAP-SR on indirect item association: 
 
Next, we tested whether either self-report measure was related to indirect item 
associations using a linear model of the following form: 
 
Indirect Item Association ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
We found no main effects for either self-report measure, as well as a lack of interaction 
effects. This indicates that the self-report measures are potentially distinct from aspects 
of participant cognitive maps. 
  
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept 25.024 6.297 43.752 9.243 37 2.708 0.01 * 
Snaith-Hamilton -0.155 -22.685 22.376 11.12 37 -0.014 0.989  
MAP-SR -14.794 -33.976 4.387 9.467 37 -1.563 0.127  
Clinical Group -25.375 -51.812 1.062 13.047 37 -1.945 0.059 . 
Snaith-
Hamilton:Clinical 
Group 

-2.953 -31.686 25.781 14.181 37 -0.208 0.836  

MAP-SR:Clinical 
Group 

6.702 -20.289 33.693 13.321 37 0.503 0.618  

 
Table S7: Indirect Item Association ~ (Snaith-Hamilton + MAP-SR) x Clinical Group 
 
Working Memory 
 
For analyses reported in the following section, we have missing data from a single 
control participant, so those were not included. Thus, in the following section, we report 
analyses with 22 control participants and 20 individuals with schizophrenia.  
 
Model-based control and performance with working memory: 
 
First, we hypothesized that working memory capacity might be a moderating factor that 
was causing the dissociation between model-based control and performance in 
patients. To assess this possibility, we ran a model of the following form: 
 
Points Earned ~ w x Running Span x Clinical Group 



 
We found no main effects as well as no interaction effects indicating that working 
memory was not differentially moderating the relationship between w and performance 
in patients and controls.  
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept -0.377 -1.479 0.724 0.542 34 -0.696 0.491  
w 0.872 -1.099 2.844 0.97 34 0.899 0.375  
Running-
span 

0.006 -0.021 0.034 0.013 34 0.488 0.629  

w : 
Running-
span 

-0.008 -0.05 0.035 0.021 34 -0.355 0.725  

Clinical 
Group 

1.123 -0.226 2.472 0.664 34 1.691 0.1 . 

w : 
Clinical 
Group 

-1.761 -4.216 0.694 1.208 34 -1.458 0.154  

Running-
span : 
Clinical 
Group 

-0.021 -0.053 0.012 0.016 34 -1.306 0.2  

w : 
Running-
span : 
Clinical 
Group 

0.035 -0.022 0.093 0.028 34 1.248 0.22  

 
Table S8: Points Earned ~ w x Running Span x Clinical Group 
 
Direct item association predicted by working memory capacity: 
 
We next sought to assess the effects of working memory capacity on both of the 
planning-relevant features of participants’ cognitive maps. Both the direct item 
association and indirect item association require integration of events over time and so 
we reasoned that these should be predicted by working memory capacity. First, we 
assessed whether working memory capacity (as measured by the running span), 
predicted the presence of direct item association in participant cognitive maps. We used 
a linear model of the following form: 
 
Direct Item Association ~ (Running Span) x Clinical Group 
 
We found a significant main effect for running span indicating that increased working 
memory capacity was coupled with increased representation of direct item association 
in the cognitive maps of controls. We also found a significant interaction where this 



relationship was not present in individuals with schizophrenia. The results of this model 
can be seen in Figure S2.   
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept -49.074 -

97.853 
-0.295 24.095 38 -

2.037 
0.049 * 

Running Span 1.41 0.438 2.382 0.48 38 2.937 0.006 ** 
Clinical Group 66.455 5.18 127.73 30.268 38 2.196 0.034 * 
Running 
Span:Clinical Group 

-1.404 -2.797 -0.011 0.688 38 -2.04 0.048 * 

 
Table S9: Direct Item Association ~ (Running Span) x Clinical Group 
 

 
Figure S3: Correlations of Direct item association measure and working memory 
capacity by clinical group. There is a positive relationship between working memory and 
the direct item association measure in controls but not in individuals with schizophrenia. 
 
Indirect item association predicted by working memory capacity: 
 
We reasoned that due to the nature of requiring abstraction over a full set of trials, 
indirect item association would be predicted by working memory capacity. To test this, 
we ran a model of the form: 
 
Indirect Item Association ~ (Running Span) x Clinical Group 



 
Surprisingly, we found no effect of working memory capacity on the representation of 
indirect item associations in either our control or clinical groups.  
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept -5.251 -62.323 51.821 28.192 38 -0.186 0.853  
Running 
Span 

0.593 -0.545 1.73 0.562 38 1.055 0.298  

Clinical 
Group 

7.421 -64.272 79.114 35.415 38 0.21 0.835  

Running 
Span:Clinical 
Group 

-0.562 -2.192 1.069 0.805 38 -0.697 0.49  

 
Table S10: Indirect Item Association ~ (Running Span) x Clinical Group 
 
 
Differences by sex 
 
We further wondered whether any of the results reported in the main text differed as a 
result of participant sex. We reran a series of models incorporating sex as a binary 
regressor with males coded as 0 and females coded as 1.  
 
Sex differences in behRSA: 
 
First, we reran our hierarchical mixed effects model with sex as an additional regressor.  
 
Formula: Coefficient ~ complexity x Clinical Group x Sex + (1|subid) 
 
We found no main effects of complexity, clinical group, or sex. We did find a trending 
effect between complexity and clinical group. This is perhaps difficult to interpret due to 
the small group sizes entering the model (approximately 10 participants for each sex x 
clinical group bin). 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
(Intercept) 22.128 7.784 36.472 7.318 38.0 3.024 0.004 ** 
complexity 8.302 -2.36 18.964 5.44 80.0 1.526 0.131  
Clinical Group -8.228 -

28.968 
12.513 10.582 38.0 -

0.777 
0.442  

Sex -14.105 -
34.846 

6.636 10.582 38.0 -
1.333 

0.19  

complexity: 
Clinical Group 

-14.018 -
29.435 

1.399 7.866 80.0 -
1.782 

0.079 . 

complexity:Sex -3.973 -19.39 11.445 7.866 80.0 -
0.505 

0.615  



Clinical 
Group:Sex 

11.991 -
19.046 

43.027 15.835 38.0 0.757 0.454  

complexity:Clinical 
Group:Sex 

2.532 -
20.538 

25.602 11.771 80.0 0.215 0.83  

 
Table S11: Coefficient ~ complexity x Clinical Group x Sex+(1|subid) 
 
Points earned ~ w x Clinical Group x Sex: 
 
We next focused on whether the dissociation between patient model-based control and 
performance could be partially explained by participant sex. To this end we ran a model  
of the form:  
 
Points earned ~ w x Clinical Group x Sex 
 
We found no main effects or interaction effects.  
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept -0.079 -

0.593 
0.435 0.253 34 -

0.311 
0.758  

w 0.523 -
0.237 

1.284 0.374 34 1.398 0.171  

Clinical Group 0.076 -
0.611 

0.764 0.338 34 0.226 0.823  

w:Clinical Group 0.218 -
0.931 

1.368 0.566 34 0.386 0.702  

Sex -0.191 -
1.013 

0.632 0.405 34 -
0.471 

0.641  

w:Sex 0.329 -
1.023 

1.68 0.665 34 0.494 0.625  

Clinical Group:Sex 0.491 -
0.615 

1.597 0.544 34 0.902 0.374  

w:Clinical 
Group:Sex 

-1.419 -
3.303 

0.466 0.927 34 -
1.529 

0.135  

Table S12: Points earned ~ w x Clinical Group x Sex 
 
w ~ Working Memory x Clinical Group x Sex 
 
We next wondered whether the dissociation in patients use of model-based control and 
their working memory capacity was accounted for by sex differences. We ran the 
following model: 
 
w ~ Running-span x Clinical Group x Sex 
 
We found a significant main effect of running span, indicating that in male controls it was 
coupled with increased model-based control. We found a significant main effect for 



clinical group, and a significant interaction where working memory capacity was not 
coupled with increased use of model-based control in patients. We also found a 
trending interaction between sex and working memory capacity indicating that working 
memory was less of a predictor of w in female controls than male controls. We also 
found a trending interaction between sex, working memory capacity, and clinical group. 
The results of this linear model can be more easily seen in Figure S4. The correlation of 
model-based control and working memory capacity seems to be primarily driven by 
male control participants.  
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept 0.071 -0.322 0.464 0.193 33 0.369 0.715  
Running 
Span 

0.012 0.004 0.019 0.004 33 3.067 0.004 ** 

Clinical 
Group 

0.579 0.08 1.078 0.245 33 2.36 0.024 * 

Running 
Span:Clinical 
Group 

-0.017 -0.029 -0.005 0.006 33 -2.82 0.008 ** 

Sex 0.481 -0.101 1.063 0.286 33 1.683 0.102  
Running 
Span:Sex 

-0.011 -0.023 0.001 0.006 33 -1.943 0.061 . 

Clinical 
Group:Sex 

-0.608 -1.375 0.159 0.377 33 -1.612 0.117  

Running 
Span:Clinical 
Group:Sex 

0.017 -0.001 0.036 0.009 33 1.937 0.061 . 

 
Table S13: w ~ Running-span x Clinical Group x Sex 
 

 



Figure S4: Differences in associations between working memory (as measured by 
running span) and model-based control in patient and control groups divided by sex. 
 
w ~ Snaith-Hamilton + MAP-SR x Clinical Group x Sex: 
 
We further wanted to assess whether the use of model-based control we dependent on 
our self-report data, and whether this differed by participant sex. 
 
We ran a model of the form: w ~ Snaith-Hamilton + MAP-SR x Clinical Group x Sex 
 
 
We found a main effect in the negative direction for the MAP-SR indicating that 
increased motivation was correlated with decreased use of model-based control in male 
control participants. We also found a main effect of group, as well as a significant 
interaction indicating that males with schizophrenia had a positive relationship between 
use of model-based control and their self-reported motivation. We found a significant 
interaction between MAP-SR and Sex such that control females had a positive 
relationship between motivation and use of control. Finally, we found a three-way 
interaction of MAP-SR, clinical group, and sex. This indicates that females with 
schizophrenia have a negative relationship between their motivation as measured by 
the MAP-SR and use of model-based control. These findings are difficult to interpret 
given the small sizes for each group. 
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept 0.671 0.556 0.786 0.056 30 11.938 0.0 *** 
Snaith-Hamilton 0.062 -0.061 0.184 0.06 30 1.029 0.312  
MAP-SR -0.159 -0.278 -0.04 0.058 30 -2.739 0.01 * 
Clinical Group -0.207 -0.372 -0.042 0.081 30 -2.565 0.016 * 
Snaith-
Hamilton:Clinical 
Group 

-0.13 -0.305 0.044 0.085 30 -1.528 0.137  

MAP-SR:Clinical 
Group 

0.285 0.109 0.462 0.086 30 3.301 0.002 ** 

Sex -0.121 -0.289 0.048 0.083 30 -1.46 0.155  
Snaith-
Hamilton:Sex 

-0.05 -0.228 0.128 0.087 30 -0.571 0.572  

MAP-SR:Sex 0.186 0.017 0.355 0.083 30 2.249 0.032 * 
Clinical 
Group:Sex 

0.177 -0.073 0.428 0.123 30 1.445 0.159  

Snaith-
Hamilton:Clinical 
Group:Sex 

0.039 -0.277 0.355 0.155 30 0.252 0.802  

MAP-SR:Clinical 
Group:Sex 

-0.347 -0.661 -0.033 0.154 30 -2.254 0.032 * 

Table S14: w ~ Snaith-Hamilton + MAP-SR x Clinical Group x Sex 
 



 
Modulation of performance ~ behRSA x Clinical Group x Sex: 
 
Finally, we sought to assess whether the enhancement of performance in high stakes 
compared to low stakes trials was predicted differentially by the behRSA parameters in 
different clinical groups as well as by participant sex. 
 
We fit a model of the form: Difference in points ~ (Visual Co-Occurrence + Direct Item 
Association + Indirect Item Association) x Clinical Group x Sex  
 
We found a trending main effect of direct item association, indicating that the presence 
of that feature was coupled with increased enhancement of performance in high-stakes 
contexts for male controls. We also found a significant interaction effect for direct item 
association and clinical group such that males with schizophrenia did not show the 
relationship between increased representation of direct item associations and increased 
performance enhancement. Finally, we found a trending main effect for sex indicating 
that females had higher performance enhancement for high-stakes contexts than males. 
 
 Estimate 2.5_ci 97.5_ci SE DF T-stat P-val Sig 
Intercept -0.136 -0.542 0.271 0.198 26 -

0.687 
0.498  

Visual Co-
occurrence 

0.009 -0.006 0.025 0.008 26 1.214 0.236  

Direct Item 
Association 

0.008 -0.001 0.017 0.004 26 1.887 0.07 . 

Indirect Item 
Association 

-0.002 -0.01 0.006 0.004 26 -
0.562 

0.579  

Clinical Group 0.037 -0.482 0.555 0.252 26 0.145 0.886  
Visual Co-
occurrence:Clinical 
Group 

0.001 -0.022 0.024 0.011 26 0.081 0.936  

Direct Item 
Association:Clinical 
Group 

-0.017 -0.033 0.0 0.008 26 -
2.052 

0.05 . 

Indirect Item 
Association:Clinical 
Group 

0.009 -0.007 0.025 0.008 26 1.182 0.248  

Sex 0.477 -0.009 0.963 0.236 26 2.018 0.054 . 
Visual Co-
occurrence:Sex 

0.0 -0.024 0.025 0.012 26 0.041 0.968  

Direct Item 
Association:Sex 

0.004 -0.012 0.019 0.008 26 0.483 0.633  

Indirect Item 
Association:Sex 

-0.007 -0.02 0.007 0.007 26 -
0.992 

0.33  

Clinical Group:Sex -0.151 -1.023 0.721 0.424 26 -
0.356 

0.725  



Visual Co-
occurrence:Clinical 
Group:Sex 

-0.009 -0.041 0.024 0.016 26 -
0.551 

0.586  

Direct Item 
Association:Clinical 
Group:Sex 

-0.007 -0.056 0.042 0.024 26 -0.29 0.774  

Indirect Item 
Association:Clinical 
Group:Sex 

0.005 -0.019 0.03 0.012 26 0.438 0.665  

 
Table S15: Difference in points ~ (Visual Co-Occurrence + Direct Item Association + 
Indirect Item Association) x Clinical Group x Sex 
 

Previous pilot sample 
We ran the behRSA model matrix fits in the same fashion as for this study for the three 
hypothesized models (Figure S5). 

We found evidence that the pilot participants represented the features at the group level 
using one sampled t-tests against 0.   

Visual Co-occurrence: (𝑡(69) = 5.03, 	𝑑	 = 	0.60, 	𝑝 < 	0.001), 

Direct item association: (𝑡(69) = 7.04, 	𝑑	 = 	0.84, 	𝑝 < 	0.001), 

Indirect item association: (𝑡(69) = 8.09, 	𝑑	 = 	0.97, 	𝑝 < 	0.001) 

Upon running a power analysis to detect the direct item association (as the most basic 
behRSA metric related to planning), we found that 11 participants would be needed to 
detect a similar sized effect at 80% power. Thus we believe that we are well-powered to 
examine cognitive map related effects in the main sample. 



 
Figure S5: Model matrix fits for previous pilot sample. Participants’ model matrix fits for 
the three hypothesized models, fit the same way as the main methods. All three of the 
models are represented within the instruction change sample. (* represents 𝑝 < 0.05) 

 


