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Free recall is shaped by inference and

scaffolded by event structure

M| Check for updates

Ata B. Karagoz® '0<, Wouter Kool'? & Zachariah M. Reagh'?

Though everyday life is continuous, people understand and remember experiences as discrete events
separated by boundaries. Event boundaries influence the temporal structure of memory, and have
been proposed to enhance encoding of boundary-adjacent information. However, the extent to which
event boundaries influence memory for specific items, and their effect on memory in interactive
environments are not well understood. Here, we designed a task to test how boundaries between
hidden rules and uncertainty about those rules affect free recall of item-level information. Participants
(n = 66) responded to a sequence of individual word stimuli, with words grouped by hidden rules
forming events, and abrupt shifts between rules causing event boundaries. Afterwards, participants
freely recalled words from the task. Recall was clustered based on event structure, such that words
from the same discrete event tended to be recalled together. Contrary to predictions of theories of
event cognition, recall was worse for words encoded immediately after event boundaries. Finally, we
used a reinforcement-learning model to characterize recall performance, allowing us to infer a positive
relationship between decision certainty and recall success. These findings indicate that the structure
of events and inferences made over that structure play important roles in shaping episodic memories.

Imagine playing a few rounds of poker with some friends. Your prior
experiences playing poker with these friends enable you to infer that one
friend is bluffing, and you choose to raise to get them to fold. This cycle of
inferring and interactively testing your inferences happens across many
everyday experiences, such as cooking, car maintenance, and programming.
Even though you experienced the game as a continuous stream of sensory
input, you might remember later the discrete event where you capitalized on
a “tell” from your friend. The parsing of continuous experience into these
sorts of events is studied in the field of event cognition as event
segmentation'™. Event segmentation is consistent across people, even with
minimal instructions, and enables us to effectively learn from and remember
the world around us (see Zacks 2020’ for a review). However, despite much
progress in recent years, the consequences of event structure on memory
representations, especially in interactive and inferential settings, remain
unclear.

Several theoretical frameworks have been proposed to explain the way
people segment and represent continuous events. Among these are Event
Segmentation Theory' (EST), the Event Indexing Model’, and the Event
Horizon Model'. Here, we focus on EST given its prominent role in guiding
recent studies of episodic memory. EST posits that observers construct
active event models that predict incoming observations. Large deviations
between prediction and observed outcomes trigger prediction errors, which

lead to the perception of an event boundary. A present limitation of studies
of event cognition is that these observations largely stem from passive
viewing experiments™”® (though see Radvansky and Copeland’). However,
in many real-world activities, people are not merely passive observers.
Instead, they interact with their environment and use the information from
these interactions to learn about the world. For instance, merely observing
people play a hand of poker might be represented and remembered dif-
ferently than if you were playing the hand yourself. Such differences could
arise due to the rapidly changing nature of goals as one plays the game
leading to different attentional settings'®'". This reveals an important gap in
our understanding of event segmentation and its effects on memory: to what
extent do theories such as EST and its body of supporting evidence extend to
dynamic, active environments where individuals are making choices to
resolve uncertainty about the events in question?

EST makes predictions about changes to both associative memory and
item memory through separate processes. According to EST, differences in
associative memory are thought to occur because of binding processes
within events and separation processes due to boundaries between events.
The coming together of items within events and separation across them has
been borne out by numerous studies®'™". The theory also predicts that
memory for information around boundary points will be enhanced. This
enhancement is thought to occur due to a sharpening of representations at
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the end of an event and the opening of perceptual gates and heightening of
attention at the beginning of a new event’ (also see Richmond and Zacks'*;
Clewett, DuBrow, and Davachi® for review). In short, EST argues that
prediction errors during event boundaries establish the need for a new event
model, and that this process leads to enhanced within-event associative
memory and enhanced memory for items occurring near boundaries.

A parallel framework used to interpret event cognition is latent cause
inference'®. Here, people are thought to generate and test hypotheses about
the state of the world. As in EST, prediction errors can also play a key role
signaling the need to reevaluate hypotheses. This suggests an intriguing
analogy between the hypotheses formed during latent cause inference and
event models in EST. For example, hypotheses about the environment lead
to sets of predictions that can be actively tested, which is akin to testing
candidate event models'. Though such mechanisms have been
proposed'®™, specific experimental evidence for this claim is currently
limited. The primary benefit of the latent cause inference approach is that it
has explicitly tested how individuals interact with their environment and
resolve uncertainty’*** (see Radulescu, Shin, and Niv* for review). Inspired
by this work, we sought to bridge these parallel lines of research by asking
how actively inferring latent states influences event segmentation, and how
this, in turn, affects long-term memory.

To test how event segmentation and inference in an interactive
environment affect the organization of episodic memory, we designed a
Word Rule Inference Task (WRIT). Participants inferred an active “task
rule” by interacting with the environment and receiving feedback™**”.
Specifically, they indicated whether a word agreed with a hidden rule,
receiving rewards when they responded correctly. This hidden rule shifted at
unpredictable intervals, causing event boundaries. After this task, partici-
pants freely recalled all the words they could remember. Importantly, this
final phase allowed us to examine how event boundaries caused by rule shifts
and the ensuing inferential process affected the structure of recall’”.

Methods

Word rule inference task

We designed a word rule inference task (WRIT) inspired by a variant of a
Wisconsin Card Sorting Task™, which we optimized to test episodic
memory. In the WRIT, participants judged whether words agreed with a
hidden active rule. On each trial, the participant was shown a word and
indicated if they believed the word agreed with the active rule via simple yes/
no responses. They were given up to 3 seconds to respond, and the word
remained on screen after their response to ensure that all words were
observed for the same duration. Then, the word disappeared, and partici-
pants received binary feedback in the form of points displayed for 1 second.

This feedback, in combination with the characteristics of the last word,
allowed participants to deduce the active rule. Critically, the active rule
changed every 6-8 trials, but this was not explicitly signaled to participants.
We ensured that the first trial following a rule change featured a word that
would elicit an error under the response contingencies of the previous rule.
This task design allowed us to probe memory for words that occurred
around rule changes, operationalized here as event boundaries. Further, it
enabled us to use computational models to assess the role of prediction error
in shaping memory representations.

Before beginning the task, participants were informed about the set of
four possible hidden rules: whether an item is (1) smaller than a backpack,
(2) larger than a backpack, (3) natural in origin, or (4) manmade. They were
instructed that on each trial, one of these four hidden rules was “active”, and
that they would sometimes change without warning (Fig. 1). The rule
changes in the task were pseudorandomly preallocated across the 4 runs to
guarantee an equal number of trials per active rule across the experiment.
We also ensured that an equal number of rule transitions would be
experienced in each run (8) with a set number of items in each run (56).
Unsignaled rule shifts happened every 6-8 trials, jittered across the
experiment. We reasoned that, due to the deterministic and binary nature of
the rules, participants would be able to infer the correct rule by the end of
the event.

Free recall task

At the end of each run, participants performed a typed free recall task”. We
designed the task to be similar to spoken recall by enforcing entry of one
word at a time and disallowing edits. Specifically, whenever a participant
finished typing a word and hit the spacebar, the word disappeared. This also
removed participants’ ability to use previously typed words as cues. Due to
minor spelling errors, we implemented a “spell-check” algorithm to correct
typos (see Supplemental Methods: Spell check). Participants were given a
minimum of 3 min to recall as many words as possible before a button
appeared enabling them to move onto the next run.

Math distractor task

To ameliorate confounds associated with the rehearsal of words in working
memory, we included a distractor task between the WRIT and the recall
task. In this task, participants judged whether a given equation was correct
or incorrect and received binary feedback. Equations were generated to be of
the form A + B + C=D, where A, B, and C were single-digit integers™. The
equations were made incorrect or correct by adding 1 to the D term 50% of
the time. New equations were continually presented until the 10-second
distractor interval ended.

Communications Psychology | (2025)3:71


www.nature.com/commspsychol

https://doi.org/10.1038/s44271-025-00243-4

Article

Participants

We recruited 95 healthy younger adults (age range = 18-36 years old) for
this study using the Prolific research platform. Of these, 13 were removed
from analyses due to below-chance performance on the WRIT (mean
accuracy less than 0.5). Another 14 were removed due to not adequately
learning the rules for enough blocks in the task. Finally, 2 participants were
removed for not performing one of the recall runs. Our final sample was 66
participants (mean age = 30.07 years, 32 female participants, 34 male par-
ticipants, sex identified using self-report). All participants were compen-
sated $10 for performing the study. All participants gave informed consent,
and procedures were approved by the Washington University in St. Louis
Institutional Review Board.

Reinforcement learning model

Reinforcement learning provides a successful framework for understanding
how people use reward learning to choose between options’. In this fra-
mework, participants are modeled as tracking the relative value of the four
rules and using that to guide their decisions™. For the current study, we
developed a reinforcement learning model that learns a set of weights of the
4 rules, W, and then uses this to decide whether to respond ‘yes’ or ‘no’ to a
stimulus. The value of saying ‘yes’ is calculated as the weighted sum of
features present in the stimulus:

Viyes) = > W(f) )
fes

Here, the model calculates the value (V) of the ‘yes’ response as the sum of
the stored weights for each feature present in the stimulus (S). The stimulus
on each trial is modeled as a binary feature vector (f), where for each of the
two stimulus dimensions (size and origin) the stimulus can have a value of 0
or 1. If items were “small”, they had a 0 in the first dimension, and if they
were “large”, this was a 1. Meanwhile, “natural” and “manmade” corre-
sponded to 0 and 1 in the second dimension, respectively. Therefore, an item
like a baseball, which is small and manmade, would have the feature vector
[0, 1]. The value of ‘no’ is the sum of stored weights for the features that are
not present in S. Upon receiving feedback, the model updates each weight
using a Rescorla-Wagner update rule:

W (f) = wel (f) + n[R, — V(choice)|Vf € choice )

Here [Rt — V(choice)} is the reward prediction error (RPE) between the
value of the choice (‘yes’ or ‘no’) and the reward outcome R,. This prediction
is multiplied by the learning rate 7, a free parameter, to update all the feature
weights that were present in the stimulus if the choice was ‘yes’, or the
weights that were not in the stimulus if the choice was ‘no’. We update the
value of all the feature weights associated with the stimulus or its inverse as
we cannot be sure of the exact feature the participant is responding to. The
weights of the non-chosen features are decayed to 0 according to a decay
parameter d, another free parameter*>”.

W™ () = dx W (f)Vf ¢ choice (3)

Finally, the model uses the value of the stimulus to select whether to
accept or reject the stimulus, that is, to respond yes or no. For instance, if the
weights for small and manmade are high, the model would be more likely to
respond “yes” to “baseball”. This choice is made using the soft-max choice
rule:

ﬁV(yes)

e

es) = ————— (4)
P05 = Gy g

Here f3 is an inverse-temperature parameter that controls the degree to
which the agent will explore or exploit its current representation. When
values are high, behavior is more exploitative, and for low f3 values it is more
exploratory.

Thus, the model had 3 free parameters (1, 8, d), which we fit using a
maximum a-posteriori approach for each participant separately, with priors
set based on previous work™. A parameter recovery analysis (see Supple-
ment: Parameter Recovery) indicated that this model was robustly identi-
fiable from behavior.

In addition to examining the relationship between behavior and
reward prediction errors from this model, we examined its relationship with
the “certainty” of the weights over the rules. First, we converted the weight
matrix (W) to a set of probabilities using a logistic transformation:

W e —max(W)

p(rule) = —Z () (5)

icrules

This produces a probability distribution of rules for each trial in the task. If
the probability distribution is uniform, uncertainty about the current is
maximally large. Therefore, deviances from a uniform distribution, measured
using Kullback-Leiber (KL) divergence” indicate increased rule certainty.

Word rule inference task analyses
Determining subjective boundary points. As the sequence of items and
order of rule events was assigned randomly for each participant, we marked
event boundaries for each participant individually. We reasoned that, in the
WRIT, people would use the first error after a rule switch as a signal that they
needed to find the new rule. Typically, this first error aligned with the first
trial of the event because it was an incongruent item by design. However, this
was not always the case. Discrepancies could arise due to participants not
finding the previous rule or making an incorrect choice by accident.
Therefore, we defined “subjective boundary points” for each participant as
the first trial after each rule shift on which they received zero points.
Overall, there was strong alignment between the subjective boundary
point and the first trial of the event (4 = 82.1%, 0 = 10.5%). In analyses
relative to the subjective boundary, the trial at t + 1 after the boundary is
called the “post-boundary” trial, ¢ — 1 is called the “pre-boundary”, and all
other trials are marked as “non-boundary”.

Performance. To assess performance improvements over the course of
the task, we ran a linear mixed-effects model of the form:

reward ~ position_relative_to_boundary X run + (1 |participant) 6)

For the run variable, the first run was modeled as 0 and each further run
was incremented by 1. This enabled us to examine the degree to which
participants improved at the primary task across runs. The variable indicating
the position relative to boundary represented the number of trials between a
given word and the nearest boundary. It was positive if it was preceded by the
nearest boundary and negative if it occurred before the nearest boundary.

Response time and post-error slowing

As participants adapted to a new hidden rule over the course of an event, we
expected response times to decrease. Along with this decrease, we expected
to find post-error response times to be elevated as a measure of inference.
We reasoned that trials following no reward would be slower than trials
following reward, indicating post-error slowing”. Finally, we wanted to
account for boundary-related slowing over and above these more general
post-error slowing and event-related speedup effects. To examine these
potential effects on response times, we ran a hierarchical mixed-effects
model of the following form:

log(RT) ~ trial_within_event + previous_no_reward + boundary_label
+ (1 |participant) + (1|word)
@)

Here, the first trial within an objective event (defined by a rule shift) is
modeled as 0 and each trial afterwards is incremented by 1. The variable

Communications Psychology | (2025)3:71


www.nature.com/commspsychol

https://doi.org/10.1038/s44271-025-00243-4

Article

indicating whether a previous trial provided reward was coded as 0 if the
previous trial was correct and 1 if the previous trial was incorrect such
that a positive effect indicates post-error slowing. Finally, the boundary
label variable is a categorical regressor, where the item’s position is coded
such that the trial at ¢+ I after the boundary is called the “post-
boundary” trial, t — I is called the “pre-boundary”, and all other trials are
marked as “non-boundary”. Non-boundary is modeled as the base factor.
We log-transform the RT data according to recommendations by Lo and
Andrews™.

Free recall analyses

Basic free recall analysis. In line with other work analyzing free recall,
we sought to measure the existence of primacy, recency, and temporal
contiguity effects in our free recall (see Kahana, Diamond, and Aka,
20227 for review). We measured primacy and recency using a serial
position curve predicting the probability of recalling words from their
serial position in WRIT. High recall of words from early positions would
be evidence of primacy. High recall of words from late positions would be
evidence of recency. In addition, data distribution was assumed to be
normal, but this was not formally tested.

We measured temporal contiguity using a lag conditional response
probability approach™. This is done by measuring the lag between a recalled
word i and the next recalled word j and looking at the probability of that lag
based on the other available lags. Both the serial position curve and condi-
tional response probability analyses were conducted using the psifr package”.

Analyses of events structuring recall

Transitions between events. Recent evidence points to event boundaries as
“anchor points” in recall. When transitioning between events, participants
are more likely to jump to boundaries than information that occurred in the
middle of an event™. To assess this, we calculated the likelihood of transi-
tioning to specific positions when moving to a new event. For each parti-
cipant, we took the position of items that were recalled after a shift in event
relative to an event boundary. We used this approach to identify all the
instances during recall wherein two consecutive words belonged to different
events. For example, if a participant’s first recalled item was from event 2 and
they next recalled an item from event 4, we examined the relative location of
the event 4 item with respect to its nearest boundary during encoding. This
provided us with the relative proportions with which each participant used
boundary items as anchor points.

Adaptive ratio of clustering. To assess the degree to which events and
item rule categories served as features by which participants clustered
their recall, we used the adjusted ratio of clustering (ARC) score proposed
by Roenker, Thompson, and Brown (1971)*". This score is calculated such
that it considers the total number of category repetitions observed in the
subject’s recall (R,,). The maximum number of possible category
repetitions, designated R .., is given by the following:

=N-—k 8)
Here N is the total number of items recalled and k is the number of cate-

gories presented. Finally, the chance number of category repetitions, E(R) is
calculated as follows:

ERR) = (%Z#) -1 )

Where n; is the number of items recalled from category i. The final formula
to calculate the score is thus:

K (10)

Spell check. Because we asked people to recall words by typing them
using their keyboard, our recall analyses needed to account for any
misspelled words. In order to recover these mistyped words, we devel-
oped a ‘spell check’ algorithm that maps common typos to an item from
the word pool. This algorithm first tags words that were not present in the
list of words a participant saw at encoding. Next, the Levenshtein edit-
distance is calculated between these words and each of the encoded
words, with a substitution cost set to 2. If the edit distance between a
potentially misspelled word and a single encoded word is less than or
equal to 2, it is deemed to be a typo. For instance, if a person saw ‘daisy’
and wrote ‘daist’, that would be corrected as a typo. If there were more
words at encoding that fit within the edit distance, the misspelled word
would be left uncorrected. For instance, if a participant saw “cat” and
“car” but wrote “cay” it would be left as “cay” because it is unclear whether
the participant had misspelled “cat” or “car”.

Hierarchical mixed effects models predicting memory. After fitting
the reinforcement-learning model, we used the best-fitting parameters
for each subject to extract reward prediction error (RPE) values and rule
certainty for each trial of each participant. We then decomposed the RPE
into its magnitude and sign and used these as separate regressors in a
hierarchical mixed effects model:

recall success ~ RPE,, X RPEg,, + (1|participant) + (1lword) (11)

Our model included a random intercept for each participant and for
each word. The model used a binomial link function to predict the binary
outcome of recall success (1 if a word was later recalled, 0 if not). The
regressor for the value of the RPE was mean-centered.

We also fit a hierarchical mixed effects model with certainty as a
predictor of recall success:

(12)

This model again included a random intercept for each participant and
each word and the regressor for the certainty was mean centered.

Finally, we fit a combined model including both certainty and RPE
predictions of recall success:

recall success ~ certainty 4 (1|participant) + (1|word)

recall success ~ RPE X RPEg,, + certainty

sign (1 3)
+ (1 |participant) + (1]word)

Preregistration. Neither the study reported in the primary manuscript,
nor the replication reported in the supplement were preregistered.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

We designed a task that required participants to uncover a hidden rule by
making judgments about individual words. The hidden rule underwent
unsignaled changes, which required participants to rapidly adapt their
model of the ongoing event. For example, if a participant thought the active
rule was “natural” and they saw the word “daisy” they would respond “yes”
(Fig. 1). However, if the hidden rule had changed to “manmade”, they would
receive 0 points. This would indicate that the rule was no longer “natural”,
requiring participants to infer this new hidden rule. We operationalized
these rule shifts as event boundaries, and subsequently tested free recall of all
words in the task to investigate the role of event boundaries and rule
uncertainty in shaping the structure of episodic memory.

WRIT performance reveals event boundaries at rule transitions
Performance on the WRIT, measured in both accuracy and RT, showed
evidence that people treated rule shifts as event boundaries (Fig. 2). A linear
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Fig. 2 | Rule shifts reliably induce event boundaries. A Task performance was high
before a rule shift, zero by definition at the boundary, and then increased over the
next few trials as participants discovered the active rule. B Participants were slowest
at the post-boundary position, as this is the first trial after it is clear that the hidden
rule has changed. Responses became faster as participants discovered the new hid-
den rule. C Response times as a function of whether the previous trial was rewarded
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(blue) or not (red). Post-error slowing is observed across all trials, with a sharp
increase on trials occurring after the incorrect response to the boundary trial.
Together, these behavioral patterns suggest that participants perceived rule shifts as
event boundaries in the task. Error bars represents 95% confidence intervals (1 = 66).
The shaded blue box indicates the boundary area.
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Fig. 3 | General recall characteristics. A Serial position curve depicting the prob-
ability of a work being recalled as a function of its serial position. There was a recency
effect where the final positions are better recalled than those in the middle, but no
primacy effect. B Conditional response probability curve showing evidence of
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canonical temporal contiguity effects in recall. The lags have been truncated to
display only —8 to +8 to focus on the temporal contiguity effect (full version in
Supplementary Fig. 1). Shading is 95% confidence interval (n = 66).

mixed effects model showed that response accuracy decreased following a
rule shift compared to the stable performance they achieved before, and then
increased across the event (B,,ion_retative_to_bouna = —0-115,p <0.001,
CI95% = [—0.15,—0.08]) (Fig. 2A). This effect is negative as the items
prior to the boundary have a negative coding and the items after a boundary
have a positive position. Participant performance also improved across runs
(B, = 0.065, p<0.001, CI95% = [0.03,0.10]). We also observed an
interaction  between run and position within the event
(ﬂpositionJelative,to,boundX un = 0‘022>p <0.001, CI95% = [0'017 003])
These results suggest that the error caused by the rule shift required parti-
cipants to update their working event model.

Another common behavioral indicator of event segmentation is post-
boundary slowing”'>*>. However, we note that post-boundary slowing
could be linked to task-switch costs*. Consistent with this phenomenon, a
linear mixed effects model showed that participants slowed down after
the rule shift (B, oyniary = 0038, p = 0.004, CI95% = [0.012,0.064];

Fig. 2B). Importantly, this model accounted for post-error
slowing (B ey o rewara = 7670, p = 0.007, CI95% = [21.28, 132.13])
and general speeding over the course of an event

Buiat sithinsvens = —0.011, p<0.001, CI95% = [—0.016, —0.006]).

Therefore, the slowing after a rule shift can be uniquely attributed to the
participants finding out that the active rule has changed. We also found a
general speedup for the boundary trial in this model

(Booundary = —0-058,p <0.001, CI95% = [—0.085, —0.032]). There was
no difference in speed for pre-boundary and non-boundary items when
accounting for general post-error slowing and within-event
speedup (B, oundary = 0-003,p = 0.814, CI95% = [0.020,0.026]).

Taken together, these results suggest that errors following stable per-
formance in an event were treated differently from errors elsewhere in the
task. This pattern of results is highly consistent with rule transitions indu-
cing event boundaries during task performance.

Overall recall performance

Because participants had to recall words encountered in a demanding
task, we wanted to ensure that free recall performance did not deviate
strongly from expectations set by prior studies. On average, participants
recalled 17.4% of the words they encountered (4 = 0.174, 0 = 0.065).
While this percentage is low compared to previous free recall studies, the
length of the recall list length (56) is much longer, so a smaller percentage
still reflects a sizable number of words recalled'***. We observed strong
evidence for a recency effect (Fig. 3A), but interestingly, no evidence for a
primacy effect. The lack of primacy effect may be attributed to the
immediate requirement for participants to perform rule inference,
reducing the resources that can be spared for encoding™. Recall perfor-
mance also featured a high degree of temporal contiguity (Fig. 3B), with
participants tending to recall sequences of words they experienced close
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in time in the WRIT”. However, we did not find evidence for the
standard forward asymmetry in recall (mean conditional recall prob-
ability of lag 1 = 0.05, mean conditional recall probability of lag -1 =
0.533, 1(65) = —0.14, p = 0.890, Cohen's d = 0.02, CI 95%=[-0.37,0.32]
for lag 1 vs lag -1).

Impaired recall of post-boundary items

Having validated both performance in the WRIT and the recall task, we
turned our attention to the effects of event boundaries on retrieval. Inter-
estingly, we found no evidence for boundary-related memory enhance-
ments predicted by extant theories such as EST'". Boundary items showed
an inconclusive difference in recall from non-boundary items (Mean
boundary recall = 0.16, mean non-boundary recall = 0.17,
#(65) = —1.65,p = 0.103, Cohen's d = —0.19, CI95% = [—0.53,0.16]).
However, pre-boundary items were recalled more often than non-boundary
(Mean pre-boundary recall = 0.19, £(65) = 2.22, p = 0.030, Cohen's d =
0.25, CI95% = [—0.1,0.59]). While lack of a boundary-specific
enhancement has been reported before'?, we found evidence that event
boundaries impaired memory. Boundary items were recalled less often than
pre-boundary items (#(65) = —2.89,p = 0.005, Cohen's d = —0.39,

*
[
[ * * |
05 | I |
304
[\
[&]
o
= 0.3
o
h=
802 }
2.
< ¢ ) R
0.1
0.0
o N N N
0\)“63 %o\)(\da %0\)(\(59 60““63
o -l ?os\’

Fig. 4 | Post-boundary inference leads to a recall deficit. Words in the post-
boundary position were remembered worse than all other positions. Interestingly,
we found no significant effect of a recall benefit for boundary items. We also find no
difference between non-boundary, pre-boundary, or boundary items. Error bars
represent 95% confidence intervals (n = 66).

CI95% = [—0.74,—0.04]). Most importantly, post-boundary items were
recalled less often than items in all other positions (mean recall of post-
boundary = 0.13, post-boundary against non-boundary #(65)=
—4.29,p<0.001, Cohen's d = —0.51, CI95% = [—0.86, —0.16], post-
boundary against pre-boundary #(65) = —4.96,p <0.001, Cohen's d =
—0.67,CI95% = [—1.03,—0.32] and post-boundary against boundary
#(65) = —2.11,p = 0.038, Cohen's d = —0.27, CI95% = [—0.62,0.07];
Fig. 4).

Boundaries and events structure recall

Events scaffold the structure of free recall. We next tested the extent to
which event structure influenced free recall. In line with previous work™,
we reasoned that participants would display temporal contiguity effects at
the level of events. To this end, we calculated the conditional response
probability based not on serial position, but rather on which event an item
belonged to (Fig. 5A). Unlike a standard conditional response prob-
ability, where self-same transitions indicate item repetitions, here they
indicate the probability of staying within an event during recall. We
found that participants tended to cluster their recall with words that
occurred in the same event (mean probability = 0.037). We found no
evidence for forward asymmetry for the recall of next event items at lag 1,
though this could be due to a lack of power to test this specific comparison
(mean of lag 1 = 0.03, mean of lag -1 = 0.02, test of lag 1 vs lag -1
#(65) = 1.52, p = 0.134, Cohen's d = 0.27, CI95% = [—0.07,0.62]).
However, when examining all forward vs backward across-event tran-
sitions, we found that transitions tended to occur in the forward order
(mean of positive lags = 0.13, mean of negative lags = 0.02, test of negative
lags vs positive ones #(65) = 7.1,p<0.001, Cohen's d = 1.28,
CI95% = [0.90, 1.66]). In sum, these analyses revealed a tendency to
stay within an event during recall, and that transitions across events
tended to occur in the forward direction.

Event boundaries anchor transitions between events in free recall.
Above, we found that participants tended to cluster items of the same
event during recall, but that they sometimes transitioned between events.
Next, we assessed the nature of these transitions. In line with
previous work®, we predicted that event-boundary timepoints would
serve as anchors during free recall. That is, we predicted that if partici-
pants transitioned to recalling items from a new event, they would be
more likely to transition to words presented on an event boundary words
than those in the middle of events. We test this prediction of event-level
transitions during recall by measuring degree to which participants
recalled consecutive words from different events (See Methods: Transi-
tions between events). For these analyses, we included only participants
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Fig. 5 | Events organize free recall. A We calculated a conditional response probability
curve using the event lag to examine the degree of temporal contiguity while recalling

events. Participants were most likely to recall words from the same event as the previously
recalled word. B The probability of recalling a word at a given position after transitioning

events. Interestingly, pre-boundary items were most commonly used as the index into an
event. (n = 59) C Using the adjusted ratio of clustering approach we found above-chance
clustering of recalled items based on the event they were experienced in, as well as the rule
of the item. Error bars and shading represent 95% confidence intervals (1 = 66).
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that had each type of anchor transition (n = 59). Indeed, items at
boundaries were used as anchors more often than non-boundary items
(mean boundary anchoring = 0.19, mean of non-boundary anchoring =
0.17, #(58) = 2.83,p = 0.006, Cohen's d = 0.36, CI 95% =
[-0.01,0.73]) (Fig. 5B). Somewhat unexpectedly, we found that pre-
boundary items also anchored recall more often than non-boundary
items  (mean of pre-boundary = 021, #(58)=3.78,
p<0.001, Cohen's d = 0.52, CI95% = [0.15, 0.89]). We found no evi-
dence that people differed in their tendency to use either pre-boundary or
boundary items as anchors when transitioning between events
(t(58) = 1.7,p = 0.094, Cohen's d = 0.25CI95% = [—0.12,0.61]).
Though pre-boundary and boundary items numerically anchored recall
more so than post-boundary items, they did not differ significantly (mean
of post-boundary = 0.19, test against pre-boundary: #(58) =
1.43,p = 0.156, Cohen's d = 0.25, CI95% = [—0.12, 0.61]; test
against boundary: £(58) = 0.13,p = 0.89, Cohen's d = 0.02,
CI95% = [—0.34, 0.39]). In sum, we found evidence for an increased
tendency to transition across events to items that occurred at or before
(but not after) an event boundary.

Recall clusters by event and by rule present during encoding. We
next assessed whether, aside from the contiguity of events and event
boundaries, recall clustered along other categorical dimensions. To do
this, we calculated an adjusted ratio of clustering to examine the nature of
recall clustering regardless of transition order. We found that partici-
pants’ recall was not only clustered by the event in which that word was
experienced (mean clustering by event = 0.17, #(65) = 5.71, p <0.001,
Cohen's d = 0.70, CI95% = [0.429, 0.978]), but also by the hidden rule
that was active when the item was presented (mean clustering by rule =
0.11, £(65) = 3.42, p = 0.001, Cohen's d = 0.42, CI95% = [0.16, 0.68];
Fig. 5C). We found no evidence that participants used reward as a
dimension to organize their free recall (mean clustering by reward = 0.05,
£(65) = 1.31,p = 0.193, Cohen's d = 0.16, CI95% = [—0.09, 0.41])
(though see Horwath et al. 2023*). Finally, we examined whether the
position of an item with respect to an event was used to organize recall.
For instance, we tested whether pre-boundary items were often followed
by other pre-boundary items but found no evidence for such organization
(mean clustering by item position = 0.01, #(65)=0.423,p =
0.673, Cohen's d = 0.05, CI95% = [—0.19, 0.30]).

A reinforcement learning model predicts participants’ recall. Next,
we investigated how the reward prediction error and rule certainty
measures from the reinforcement-learning model related to recall suc-
cess. Even though we ran two separate models predicting recall success as
a function of these components individually, we found that the combined
model significantly outperformed both (combined vs certainty only x2(3)
=15.75, p=0.001, combined vs RPE only x2(1) = 19.00, p < 0.001). For this
reason, we focus on the results of the combined model.

First, following previous work, we predicted that the absolute magni-
tude of RPEs would be positively associated with increased memory
performance’*. Counterintuitively we find a negative effect of absolute
RPE on memory (ﬁRPEnh: = —0.162,p = 0.013, CI95% =
[-0.291,—-0.034]). We find no main effect of value
(Bre,, = —0.040, p = 0.091, CI95% = [—0.086, 0.006]). We do find a
marginally significant interaction between the value and sign of RPE
(o, pr,, = —0.123,p = 0.065, CI95% = [—0.253,0.007]), this effect
is one of the primary differences between the replication and the primary
sample (Supplement: Replication). Upon further examining the RPE as a
function of trials (Fig. 6A, B), one can see that in most trials there is a small
positive prediction error. This could be somewhat of an artifact of how the
weight decay works in the model. On any given trial only one rule is active
but values of two rules are always updated based on the choice and reward.
This leads to a situation where the non-relevant feature alternates it con-
stantly generates a small positive RPE. Interestingly, the model without this

decay fits worse across all participants (See Supplement: Model
Comparison).

To account for this, we developed a certainty measure using the KL
divergence of the weight matrix from a uniform distribution (Methods:
reinforcement learning model). As the model learned more asymmetric
weights with a peak on the relevant dimension, the alternation of the weights
on the irrelevant dimension that produces the positive RPE would still result
in the same certainty measure. Upon fitting the combined model we found
certainty was a strong predictor of memory, such that higher certainty about
the rule distribution was linked to higher recall performance
(Beorainy = 5469, p<0.001, CI95% = [3.047, 7.892]) (Fig. 6C, D).

Discussion

Everyday life is full of uncertainty, requiring interaction and inference to
discern important information in the environment. However, with
experience, we learn the structure of the world sufficiently well to predict
how things typically unfold. EST argues that we do so by forming event
models that predict perceptual input'. However, much of the prior literature
has studied passive viewing of events as they unfold, and has often featured
paradigms where uncertainty is difficult to quantify. Other research has
studied how people interactively resolve uncertainty, but these experiments
offer little insight into the influence of event structure on this process. Here,
we examined the formation of event models in inferential, interactive events.
Contrary to predictions from EST, we observed memory deficits for infor-
mation encountered after event boundaries, and no evidence for memory
enhancements for information around event boundaries. This suggests that
constructing event models in environments where one can interactively
reduce uncertainty is not conducive to encoding episodic memories. At the
same time, we found that event structure guided free recall, such that par-
ticipants used events as a fundamental organizing property. Finally, in line
with previous work on inferential hypothesis testing, behavior in the WRIT
was well described by a reinforcement-learning model™*. However, in
contrast to previous studies’*, we found a negative relationship between
memory and the magnitude of the RPE. Only smaller RPEs were associated
with greater recall success.

The influence of event boundaries on episodic memory has been the
subject of much investigation®'**. In recent work, Richmond and Zacks
posit that event segmentation and event model construction processes result
in increased encoding for items immediately surrounding an event
boundary"* (see also Clewett et al., 2019"). In this study, however, we do not
see evidence for a consistent recall benefit for pre-boundary or boundary
items. Importantly, we found evidence in conflict with a prediction of EST:
recall was systematically worse for items encoded following an event
boundary. This may suggest that event model construction is harmful to
rather than helpful for encoding episodic memory under some circum-
stances. What could account for this unexpected result?

One intriguing possibility is that this reduction in memory is driven by
the effort requirements of active inference. Indeed, research on cognitive
control suggests that the exertion of mental effort carries an intrinsic cost".
We believe that the process of inferring the hidden rule in the WRIT requires
many control-demanding computations (e.g., manipulation of information
in working memory, task switching costs™). The cost associated with these
computations may reduce the availability of attentional resources for
encoding information in long-term memory. Another possibility is that the
post-boundary memory deficit is driven by the lack of a representational
scaffold immediately after rule shifts. Future investigations may dis-
ambiguate between these hypotheses. Altogether, our findings reveal a
complex interplay between event segmentation and interactive, inferential
processes in deciding the fate of episodic memories. Importantly, due to the
design of many prior studies, this interplay has until now gone undetected.

Free recall is well known to be affected by the structure of encoded
information. For example, word recall order is strongly shaped by temporal
context (Howard and Kahana 2002) and semantic category’'. Here, we
found that higher-order event structure, delineated by shifting rules, served
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Fig. 6 | A reinforcement learning model predicts recall. A Across the task, parti-
cipants generally experience small positive RPEs. This happens because perfor-
mance improved across the duration of an event. Moreover, each trial provides RPEs
for both a relevant and irrelevant stimulus dimension. As the irrelevant feature
alternates participants will experience a small positive RPE. The event boundary
time point has a large negative RPE as the weights for a specific rule go from being
consistently rewarded to unrewarded when the rule has changed. B The predicted
probability of recall success changes as a function of the magnitude of RPEs. Positive
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RPEs are negatively predictive of recall success such that larger positive RPEs are
coupled with lower odds of recalling an item. Negative RPEs meanwhile, while
qualitatively flatter, do not statistically differ in their effect on recall. C Across the
task, participants gain certainty about the active rule before becoming uncertain at
event boundaries, then must slowly build up certainty once again. D Increased
certainty is coupled with a higher predicted probability of recall. (Error bars are 95%
confidence interval, shading is 95% confidence interval of the HLM effect estimate
(n = 66))

as a scaffold for organizing recall. Specifically, participants anchored their
recall to items that served as event boundaries, as well as pre-boundary
items. This finding aligns with a recent study by Michelmann and colleagues
(2023), where participants were found to jump between event boundaries
when remembering events in a movie. However, our paradigm features
several important differences from this study. In a Hollywood-style film,
event transitions are both passively viewed and purposefully telegraphed to
an observer. In the WRIT, however, participants interactively discover when
event transitions occur. In particular, the boundaries in our task were likely
perceived after encoding the boundary item, when participants received
feedback. Our results suggest that the way events structure recall depends on
whether their boundaries can be either simply observed and instantaneously
processed, or if they need to be actively inferred from interactions with one’s
environment.

Previous work incorporating reward into event cognition has found
that unsignaled surprise heightens memory and forms event boundaries™*”.
Here, we found the inverse, that large magnitude RPEs dampen memory.
This may be due to the structure of our task, where the largest magnitude
negative RPEs occur at the event boundary by design, and the largest
positive RPEs occur directly afterwards. Though it should be noted that even
though we replicated the effect of higher magnitude positive RPEs pre-
dicting memory decrements in a follow-up replication, we found that the
negative RPEs showed a different trend (Supplemental Results: Replication).
Nonetheless, this reveals that memory is not unilaterally affected by surprise,
a distinction not made by theories of event cognition.

Theories of latent cause inference predict increased uncertainty after
rule shifts, at the same time, our reinforcement learning model encodes
particularly strong negative RPEs. Indeed, the RPEs signal the need for a

revaluation of the internal task representation. This suggests that our
model, even though not explicitly formulated in terms of latent cause
inference, accounts for uncertainty reduction over latent causes. Con-
sistent with this, KL divergence (a measure of uncertainty over rules)
strongly predicted memory performance, in line with predictions from
latent cause inference-based theories of event cognition'’. Future
experiments could aim to better disentangle latent cause inference and
reinforcement learning to enable different modeling approaches, as
previous work has highlighted the strong connections between latent
cause inference and event cognition'’™".

Limitations

The goal of the present study was to develop an interactive approach to
studying the role of event structure in shaping episodic memory. In our
paradigm, like in many events we encounter in daily life, people must
interact with their environment to understand which set of behaviors fit a
given situation. A key limitation is that the task we used to study this was
considerably less naturalistic than studies of event memory that involve
movie viewing””*’. However, the use of word stimuli and the use of free
recall as the key measure enabled us to manipulate the nature of event
boundaries and to probe specific content and structural components of
recall. Using individual words as trials, we were able to define transitional
moments and track performance and uncertainty reduction across distinct
epochs. This enabled us to discover the effects of event boundaries on
memory that run counter to predictions of EST. Furthermore, the gain in
information from individual trials is slower and more easily modeled than in
more naturalistic stimuli. This allowed us to better understand how
uncertainty reduction interacts with event model construction, as well as
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better investigate reaction times, as in the task-switching literature”’. Our
research may inspire new studies that use more naturalistic paradigms to
study the role of inference in event cognition.

One limitation of all free recall experiments is that participants tend to
recall only a fraction of the studied list. However, future studies can mitigate
this by using a recognition memory paradigm, which would enable one to
assess memory for each item.

A third limitation of the current work is that event boundaries are being
inferred from changes in response time and task behavior rather than
directly indexed. In conjunction with the simplicity of the task, this might
raise a question of whether “event boundaries” per se are being induced.
However, this experimental logic has been applied to many contemporary
studies over similar topics®” and the behavioral effects we observe (e.g.,
slowed RTs after a shift) are consistent with this operationalization of event
boundaries. Though previous studies with similar paradigms have used a
reinforcement learning formalization to characterize behavior®, it is not
clear whether the neural underpinnings of our results are necessarily per-
formed in systems thought to be connected to reinforcement learning (e.g.,
ventral striatum). Indeed, the reward prediction error we generate with our
model could instead be proposed to be a domain-general prediction error
(though we retain the reinforcement learning terminology for consistency
with previous literature™).

A final limitation of the current work is that the experiment does not
contain causal connections between events. In daily life, there are many
causal reasons as to why a given scenario follows another, and there are
frameworks of event cognition that put more weight on this**'°. Indeed, this
could be an important distinction between the phenomena we observe and
those best characterized by EST. Future work can expand this experimental
paradigm by embedding causal connections between the rule shifts to better
compare the predictions of these frameworks.

Conclusion

In sum, our findings reveal that the structure of events during encoding
scaffolds later recall of individual items, with event boundaries serving as
anchor points. Further, we found that, in a dynamic and interactive task,
event boundaries inhibit rather than enhance memory for post-boundary
items. This runs contrary to predictions of EST, as well as several empirical
findings from studies using passive tasks. Finally, we found reduced
memory for items that were experienced with larger prediction errors,
particularly those with positive prediction errors. Overall, our study suggests
that event segmentation and its effects on long-term memory seem to be
fundamentally different in situations where participants can interactively
decrease their uncertainty instead of passively waiting for perceptual input.
These results deepen our understanding of the way event structure scaffolds
episodic memories and can guide the development of theoretical and
computational models of event cognition.

Data availability

The raw datasets for the primary study and the replication are available at
the following OSF: https://osf.io/3d746/ The processed dataset for the pri-
mary study and replication are available on GitHub at the following link:
https://doi.org/10.5281/zenodo.12699873.

Code availability

The code for running the experiment (jsPsych) as well as analyzing the data
(custom python scripts) for the study is available on GitHub at the following
link: https://doi.org/10.5281/zenodo.12699873.
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