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Reinforcement learning studies propose that decision-making is guided by a tradeoff between computationally cheaper model-free
(habitual) control and costly model-based (goal-directed) control. Greater model-based control is typically used under highly
rewarding conditions to minimize risk and maximize gain. Although prior studies have shown impairments in sensitivity to reward
value in individuals with frequent alcohol use, it is unclear how these individuals arbitrate between model-free and model-based
control based on the magnitude of reward incentives. In this study, 81 individuals (47 frequent Alcohol Users and 34 Alcohol Non-
Users) performed a modified 2-step learning task where stakes were sometimes high, and other times they were low. Maximum a
posteriori fitting of a dual-system reinforcement-learning model was used to assess the degree of model-based control, and a utility
model was used to assess risk sensitivity for the low- and high-stakes trials separately. As expected, Alcohol Non-Users showed
significantly higher model-based control in higher compared to lower reward conditions, whereas no such difference between the
two conditions was observed for the Alcohol Users. Additionally, both groups were significantly less risk-averse in higher compared
to lower reward conditions. However, Alcohol Users were significantly less risk-averse compared to Alcohol Non-Users in the higher
reward condition. Lastly, greater model-based control was associated with a less risk-sensitive approach in Alcohol Users. Taken
together, these results suggest that frequent Alcohol Users may have impaired metacontrol, making them less flexible to varying
monetary rewards and more prone to risky decision-making, especially when the stakes are high.
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LAY SUMMARY

This study explored decision-making in frequent alcohol users versus alcohol non-users. Normally, people use more thoughtful
strategies when rewards are high. The study shows alcohol users are not doing so and remain less cautious and take more risks
when stakes are high. This suggests that frequent alcohol users may struggle to adapt their decision-making based on reward size,
leading to riskier choices especially when potential gains are significant.

INTRODUCTION
Excessive alcohol consumption and alcohol use disorders (AUD)
are growing public health concerns, costing $249 billion annually
in the United States alone [1, 2]. During the COVID-19 pandemic,
deaths from excessive alcohol and AUD increased, especially
among women [3–5]. Therefore, it is vital to increase our
understanding of neurobehavioral factors linked to alcohol
consumption and its consequences. Impaired decision-making is
one such behavioral aspect that is found to be associated with
alcohol and substance use disorders. Research in this domain has
painted the relatively straightforward picture that substance

abuse reduces reward sensitivity [6–11], and thereby reward-
related learning [12, 13].
However, decision-making is not a unitary construct. Humans are

equipped with a range of choice strategies, varying in accuracy and
demand [14, 15]. Therefore, efficient decision-making requires us to
allocate cognitive resources between these strategies [16, 17]. Even
though such arbitration is critical for efficiently navigating the world
[18, 19], it is unknown whether and how alcohol and substance
abuse also impair this form of higher-order decision-making.
In this paper, we address this question through the lens of

reinforcement learning (RL). Recent advances in RL have provided
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formalizations for two systems that control choice: a fast,
automatic system and a slow deliberative system. In the language
of machine learning, these systems are mapped to “model-free”
and “model-based” RL [20–22]. Model-free strategies learn
through trial-and-error, which is computationally cheap but
inflexible. Model-based strategies are computationally demanding
but more accurate because they plan through an internal model
of the environment towards goals [23–26].
The arbitration between these systems follows a cost-benefit

tradeoff. A greater influence of model-based decision-making is
observed for high reward stakes to increase reward rate, but only
when it is more accurate than model-free control [27, 28]. People
rely more on model-free control when cognitive resources are
taxed [29] or when planning complexity increases [30]. Moreover,
the ability to arbitrate between these systems varies between
populations: it emerges throughout adolescence [31] and declines
during aging [32]. In non-human studies, it is observed that
substance use alters the balance between model-free and model-
based control in reward-related learning [33, 34]. Moreover, some
studies in humans have shown that substance use results in
dysfunctional and in some cases risk insensitive decision-making
[35–37].
Here, we use this framework to study impairments in decision-

making in individuals with long-term and frequent alcohol use
[38, 39]. These impairments may be driven by an increased reliance
on less taxing model-free control [7] or by reduced risk sensitivity
(i.e., the trade-off between the value preference and the risk
preference) [40]. However, others have reported that alcohol [41]
and substance use [42] may be associated with reduced model-
free decision-making, whereas some have reported comparable
use of model-free and model-based control between Alcohol Users
and Alcohol Non-Users [43]. However, it remains unknown whether
alcohol use affects the arbitration between systems. That is,
whether it is associated with a reduced ability to shift between
strategies based contextual factors such as reward magnitude.
To examine these questions, we used a modified version of the

“two-step task” [20, 24], a sequential decision-making paradigm
that dissociates between model-based and model-free contribu-
tions to a choice. This task included a reward magnitude
manipulation to test participants’ ability to increase model-based
control when there is a heightened opportunity for reward [23].
We hypothesized that, compared to Alcohol Non-Users, (1)

Alcohol Users would show less model-based decision-making in
overall task performance, and (2) Alcohol Users would be less
sensitive to reward amplification, showing less model-based
decision-making in the high-stakes condition compared to the
low-stakes condition. In addition, we also explored whether the
hypothesized difference in arbitration is associated with different
levels of risk sensitivity in Alcohol Users.

METHODS
Participants
Eighty-one individuals (58% female) participated in an online study that was
conducted during the COVID-19 epidemic (July 2020 – August 2022). The
study was advertised on social media platforms and participants throughout
the continental United States were eligible to participate in this study. All
participants provided informed consent. The study was approved by the
Institutional Review Board of the Icahn School of Medicine at Mount Sinai.
All participants completed the ‘Coronavirus Health Impact Survey’

(CRISIS) questionnaire [44]. Data on alcohol use frequency from the CRISIS
survey item 146 (“For the 3 months DURING LOCKDOWN, how frequently did
you use alcohol ?) was used to stratify participants into different groups.
Participants who reported no alcohol use and those who reported
consuming alcohol less than once a month were grouped as Alcohol Non-
Users (n= 34), and those who reported consuming alcohol multiple times
a month to more than once a day were grouped as Alcohol Users (n= 47).
The Alcohol Use Disorders Identification Test (AUDIT) [45, 46], Patient
Health Questionnaire PHQ-9) [47] and Generalized Anxiety Disorder

Questionnaire (GAD-7) [48] were also used to assess the severity of
alcohol use, depressive and anxiety symptoms, respectively.

Modified Two-Step Task
The task used in this study is a modified version of a previously developed
two-step learning task [24, 49], aimed to test whether choice behavior
shows increased model-based control in the face of increased reward
magnitude [27]. A detailed description of the task has been published
previously [27].
Each trial starts randomly in one of two first-stage states, each with a

choice between two spaceships that lead to a red or purple planet in the
second stage (Fig. 1). These planets provide the opportunity to earn
rewards. These independently drift over time for each planet. The task
dissociates model-free from model-based decision making because each
first-stage state offers an identical choice between transitioning to the red
and the purple planet. A model-based decision-maker uses this
equivalence to transfer experiences between states, while a model-free
decision-maker relies on action-reward contingencies without considering
the task’s transition structure [23, 27, 49].
Our version of this task included a reward magnitude manipulation [23].

Each trial started with a randomly picked cue that indicated whether it
involved low or a high stakes. In high-stakes trials, the rewards earned in
the second-stage state were multiplied by 5, whereas in low-stakes trials
they were unaltered (Fig. 1). For each trial, there was a 50% probability it
would involve low stakes, and 50% probability it would involve high stakes.
This ensured there was no bias in the number of high- and low-stakes trials
between the two groups of participants.
Each subject completed 200 trials. The task was programmed in jsPsych

[50] and was hosted on Pavlovia platform (https://pavlovia.org). In addition
to receiving compensation for participating in the study, participants were
told that they could earn up to $5 based on their performance. However, in
the end, all participants were paid $5 for completing this task.

Computational modeling
Dual-system RL model. We used a dual-system RL model [24, 51, 52] to
describe behavior in terms of both model-based and model-free control.
The model-free system learns state-action values for all first and second-
stage states through a simple temporal difference-learning algorithm [21],
whereas the model-based system uses the transition structure of the task to
plan towards goals. The relative tradeoff between these systems is modeled
as a mixture between action values computed by these two systems.
The model consists of a function Q(s,a) that maps each state-action pair

to estimates of future rewards. The task consists of four available states
across two stages, two available actions at the first-stage states (aA and aB)
and one action at the second-stage states (aC).
The model-free system uses the SARSA(λ) temporal difference learning

algorithm [53] to calculate values of each state-action pair. This algorithm
updates the value of the state-action pair (s,a) at each stage ‘i’ and trial ‘t’,
according to:

QMF si;tai;t
� � ¼ QMF si;tai;t

� �þ αδi;tεi;tðs; aÞ

where,

δi;t ¼ ri;t þ QMF siþ1;t ; aiþ1;t
� �� QMF si;t; ai;t

� �

is the reward prediction error (RPE), α is the learning rate (determining the
degree to which new information is incorporated), and ε(i,t) (s, a) is the
eligibility trace. The eligibility trace of each action is set to zero at the start
of each trial and updated according to

εi;t si;t ; ai;t
� � ¼ εi�1;t si;t ; ai;t

� �þ 1

before the Q-value update. After each update, the eligibilities of all state-
action pairs are then decayed by λ. It is important to note that λ is a free
parameter, but that ε is not. The former dictates the degree to which
eligibilities are decayed, the latter simply counts which actions have been
chosen.
Since there is no reward in the first state, the RPE (δ) for the first stage is

only driven by the value of the second-stage action QMF (s2,t, a2,t):

δ1;t ¼ QMF s2;t; a2;t
� �� QMF s1;t; a1;t

� �

Only the first-stage action is updated by this prediction error, and its
eligibility for future updates on the current trial is only decayed by λ after
this update.
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Since there is no further stage beyond the second, the second-stage
prediction error is only driven by the second-stage reward r2,t:

δ2;t ¼ r2;t � QMF s2;t ; a2;t
� �

Both the first- and second-stage values are updated at the second stage
using this RPE. As mentioned above, the first-stage value is updated with
the second-stage RPE down-weighted by the eligibility trace decay, λ. This
means that, when λ= 0, only the value of the current second-stage action
value is updated. When λ= 1, the values of the chosen first-stage and
second-stage action values are updated by the same amount.
The model-based agent computes first-stage action values by combin-

ing a transition function, which maps the first-stage state-action pairs to a
probability distribution over the subsequent states, with the second-stage
(model-free) values. For each action aj in first-stage state s1,I,these model-
based values are defined in terms of the expected values of each first-stage
action using the transition structure P:

QMB s1;i ; aj
� � ¼ P s2;1js1;i ; aj

� �
QMF s2;1; ac

� �þ P s2;2js1;i ; aj
� �

QMF s2;2; ac
� �

At the second stage, the model-based and model-free coincide, and so
QMB ¼ QMF .
To connect the values to choices, the Q-values of both systems are

mixed according to a weighting parameter ω:

Qnetðs1;i ; ajÞ ¼ ωQMBðs1;i ; ajÞ þ ð1� ωÞQMFðs1;i ; ajÞ

Thus, higher values of this parameter (closer to 1) reflect increased
model-based control, whereas lower values (closer to 0) suggest stronger
model-free control. To accommodate our stake manipulation, we defined
two different weights for the different trial types. Specifically, we set
ω=ωlow for low-stake trials and ω=ωhigh for high-stake trials.
We used the soft-max rule to translate these Q-values to actions. This

rule computes the probability for an action reflecting the mixture of action
values weighted by an inverse temperature parameter. At both states, the
probability of choosing action a on trial t is computed as:

pðai;t ¼ ajsi;tÞ ¼ exp½βðQnetðsi;t ; aÞ þ π � repðaÞ þ ρ � respðaÞ�
P

a0 exp½βðQnetðsi;t ; a00Þ þ π � repða0Þ þ ρ � respða0Þ�

where the inverse temperature β determines the randomness of the choice
(with values close to zero reflecting fully random choice, and large positive
values reflecting exploitation). The indicator variables rep(a) and resp(a) are
set to 1 for actions or key presses that the participants chose on the
previous trial and are zero otherwise. Multiplied with the ‘stickiness’
parameter π and ‘response stickiness’ parameter ρ, respectively, these

capture the degree to which people show choice perseveration or
switching at the first stage state.
We used a maximum a posteriori estimation with empirical priors based

on prior work [32], implemented using the mfit toolbox [54] (https://
github.com/sjgershm/mfit) to fit the free parameters in the computational
models to observed data. For all parameters bounded between 0 and 1
(α;ωlow ;ωhigh; λ; ρ) we used a Beta (2,2) prior. For the inverse temperature
β, we used a Gamma (3, 0.2) prior and for the stickiness parameters ðπ; ρÞ,
we used a Nð0; 1Þ prior. To avoid local optima in estimation, the
optimization was run 100 times for each participant with random
initializations for each parameter. The final estimations for all parameters
were extracted from the run with the maximal posterior probability.
(Supplementary table S1) reports the estimated parameters.
We also fit an “exhaustive”model that varied all parameters between the

high- and low-stake trials. We used the same maximum a posteriori
estimation with the same empirical priors as described above to obtain
estimates for these 12 parameters.

Utility function. The utility function U [55] is a modified version of the
utility formulation [56, 57] that estimates the risk sensitivity with varying
reward magnitude and the trade-off between value preference and risk
preference for a given state ‘s’ and action ‘a’. It is computed as:

Utðs; aÞ ¼ Rtðs; aÞ � μ:signðRtðs; aÞÞ �
ffiffiffi
h

p
tðs; aÞ

Here, the risk sensitivity parameter μ reflects risk preference, the term
sign(Rt(s,a)) reduces the magnitude of estimation function for positive
values of R and increases it for negative values of R, and the return variance
or risk function (√ht). Thus, this function naturally incorporates the notion
of increased risk-seeking behavior for gains and increased risk-aversive
behavior for losses.
This function estimates five parameters μ (risk sensitivity), β (explore-

exploit tradeoff), η (learning rate), Γ (discount factor for long-term rewards),
and δlimit (maximum error magnitude associated with reward). Higher μ
implies risk aversion and lower value implies risk seeking, higher β favors
exploitation, η is the learning rate, Γ weighs long-term over immediate
rewards, and δlimit is the maximum error magnitude.
For risk-value estimation, the model only considers first stage states

since the second stage action does not impact the risk trade-off. We fit
parameters separately for low- and high-stake trials, using the genetic
algorithm [58] to identify the best fit considering response changes
(mutations), learning adjustments (crossovers) and choices. The action
selection is based on soft-max probabilities, where the expected return is
updated using a learning rate ðηÞ and a temporal difference error ðδÞ. The

Fig. 1 Modified 2-step learning task. a Cue indicating the nature of the trial by highlighting the stake multiplier 5x, indicating a highstakes.
trial b Modified 2-step task: Participants choose the first-stage option between two spaceships, followed by a probabilistic transition to the
second stage on either the red or purple planet [56].
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genetic algorithm evolves mutations and the crossovers over the initial
population (size = 1000, generations = 100) to optimally fit parameter
values. The free parameters are estimated by maximizing the fitness
function iterated over 200 trials.
Of the five free parameters, the risk sensitivity parameter ðμÞ was of

most interest for statistical analysis. Therefore, the Supplementary
Section provides additional details of the utility function. Here, we have
used two different models (1) to estimate the degree of model-based vs
model-free control, and (2) to estimate risk sensitivity. Given the relatively
small sample size of Alcohol Users (n= 47) and Alcohol Non-users (n= 34),
to ensure the reliability of results, we did not split the data further into test
and training sets to cross-validate the model accuracy.

Statistical approach. Parameter fits were analyzed using a 2 × 2 analysis
of variance (ANOVA) using stakes (High vs. Low) and group (Alcohol users
vs. Alcohol Non-Users) as between-subject factors. Since the parameter fits
of both models were not normally distributed, we used the Mann-Whitney
U test for hypothesis testing. Furthermore, we used Spearman Rank
correlation to assess the associations between model-based and model-
free weighting ðωÞ and risk sensitivity (μ) parameters (calculated for high-
stakes trials, low-stakes trials, and the difference between high- and low-
stakes trials) with each other and with validated measures of alcohol use
severity (i.e., AUDIT scores) and depression symptom severity (i.e., PHQ-9
scores). Finally, we performed a correlation analysis to investigate the
relationship between the weighting parameter (ω) and risk sensitivity (μ)
obtained from two models. The analyses were conducted first for the
entire sample and then separately for Alcohol Users and Alcohol Non-
Users. Bonferroni corrections were applied to adjust for multiple
comparisons. To assess the robustness of these correlations, as both
parameters are derived from the same dataset, we employed a cross-
validation approach by splitting each subject’s dataset into two halves. We
conducted two types of correlation analyses: one by splitting the data into
the first 100 trials and the second 100 trials for preserving temporality, and
the other by separating all odd-numbered trials from even-numbered
trials, correlating ω and μ derived from these distinct datasets. Results from
these cross-validations, along with the sensitivity analysis are presented in
the Supplemental Section.

RESULTS
Sample characteristics
As shown in Table 1, groups did not differ significantly in gender (p
=0.282), ethnicity (p =.529), and education (p = 0.943). However,
they significantly differed in age (p < 0.001), such that a greater
proportion of participants (Alcohol Non-Users: 73%, Alcohol Users:
61%) were between the ages 18 and 40. As expected, AUDIT scores
were significantly higher in Alcohol Users, compared to Alcohol
Non-Users (p < 0.001), showing more severe alcohol use in Alcohol
Users (Mean and standard deviation are reported in Table 1). Age
did not correlate significantly with computational variables, and
therefore, was not used as a covariate. We report the results with
age as a covariate in the Supplementary Section.

Dual system RL model outcomes
Here, we report the statistical tests on variables that relate most
closely to our hypotheses, namely the average reward in the task,
and the degree of model-based control ðωÞ. The analyses on the
other RL parameters are presented in the Supplementary Section.
A between-group Mann-Whitney U test showed no significant

group differences in mean reward rate (Z= 1.024, p= 0.306) or
the average number of points collected per trial. This suggests
that, on average, groups performed equally well.
However, a 2 (Stakes: Low, High) × 2 (Groups: Alcohol Non-

Users, Alcohol Users) ANOVA showed a significant main effect of
Stakes (F79,1= 5.469, p= 0.022, partial η2= 0.065) and a Stakes ×
Groups interaction (F79,1= 6.463, p= 0.013, partial η2= 0.076) on
model-based control. The main effect of Group (F79,1= 0.504,
p= 0.480, partial η2= 0.006) was not statistically significant.
Follow-up within-subject Wilcoxon tests revealed that the
difference between the High and Low model-based weighting
parameters was statistically significant in Alcohol Non-Users

(Z=−2.402, p= 0.016), but not in Alcohol Users (Z=−0.508,
p= 0.611). Mann-Whitney U tests revealed no significant
between-group difference in mixing weight for Low (Z=−1.876,
p= 0.061) nor High (Z=−0.612, p= 0.540) stakes (Fig. 2a). This
result suggests that, even though performance on the task was
comparable, Alcohol Users were less likely to adopt different
strategies based on the reward incentive.

Utility Function
Next, we turned our attention to our measure of risk sensitivity
from the utility function. A 2 x 2 ANOVA of showed a significant
main effect of Stakes (F76,1= 36.08, p < 0.001, partial η2= .322)
and a Stakes × Groups interaction (F76,1= 4.524, p= 0.037, partial
η2= 0.056). There was no significant main effect of Group
(F76,1= .992, p= 0.322, partial η2= 0.013). Post-hoc analyses using
independent t-tests found that risk sensitivity did not differ
between groups on low stakes trials (t=−1.461, p= 0.152), but
that on high stakes trials risk sensitivity was significantly higher in
Alcohol Non-Users compared to Alcohol Users (t= 2.280,
p= 0.030). Follow-up within-subject Wilcoxon tests revealed that
the risk sensitivity difference between the High and Low stake trail
was statistically significant both in Alcohol Non-users (Z=−3.702,
p < 0.001), and in Alcohol Users (Z=−2.737, p= 0.006). Mann-
Whitney U tests revealed a significant between-group difference
in risk sensitivity for High (Z=−2.016, p= 0.044) and a significant
trend for Low (Z= 1.950, p= .051) stakes. This result suggests that
both Alcohol Users and Alcohol Non-users were sensitive to risk
and reward magnitude (Fig. 2b).

Correlation analyses
Finally, we explored the relation between the parameters from the
two computational models. Correlation analyses revealed that for
High stakes trials in Alcohol Users, the weighting parameter (ω)
was negatively correlated with risk sensitivity (μ) (r=−0.349,
p= 0.018), such that in Alcohol Users, less model-free control was
associated with greater risk aversive behavior. However, this
relationship was not statistically significant in Alcohol Non-Users
(r=−0.229, p= 0.207) (Fig. 3a). Further, Fisher’s Z transformation
indicated that these correlations were not significantly different
between Alcohol Users and Alcohol Non-users (z=−0.55,
p= 0.5823). Moreover, in Alcohol Non-Users, the greater differ-
ence between mixing weight for High relative to Low stakes (Δω)
was associated with lower depressive symptoms (assessed via the
PHQ-8; r=−0.360, p= 0.040), such that Alcohol Non-Users with
lower depressive symptoms showed greater increase model-
based decision making in high- relative to low-stakes trials (Fig. 3b).
(Supplemental table S2 has additional analysis)

DISCUSSION
This study used a modified two-step task to examine the
arbitration between model-based and model-free RL systems in
Alcohol Users compared to Alcohol Non-Users. We found that
Alcohol Non-Users and Alcohol Users did not differ in the overall
reliance on model-based control during the task. However, unlike
Alcohol Non-Users, Alcohol Users did not increase model-based
control based on reward incentives. Additionally, even though
both groups exhibited increased risk aversion in high- compared
to low-stakes trials, this effect was pronounced for Alcohol Users.
Lastly, in Alcohol Users greater model-based control was
associated with less risk aversiveness in high reward stakes, and
in Alcohol Non-Users greater increase in model-based control in
high relative to low reward conditions was associated with lower
depressive symptoms.
We have found evidence that alcohol use impairs the ability to

arbitrate between decision making strategies. Alcohol Non-Users
increased their use of model-based control on high-stakes trials,
consistent with prior reports using healthy young adults [23,
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31, 32]. However, Alcohol Users did not show such flexibility in
arbitration. These findings suggest that people who use alcohol
regularly struggle to shift between decision-making strategies
based on contextual factors such as reward-related anticipatory
cues and therefore make less optimal choices. Of course,
arbitration between strategies is not only based on reward
incentives. Inflexible arbitration between model-based and model-
free control generalizes to other external influences. Indeed, a
recent study showed that while Alcohol Non-Users employed less
model-based control in high- compared to low-stress conditions,
Alcohol Users did not show such a reduction in model-based
control across stress levels [59]. Future work, varying other
contextual variables, will broaden our understanding of how
alcohol use affects controlled arbitration.

Importantly, some studies have previously shown greater reliance
on model-free compared to model-based control in substance [42]
and alcohol [41] users. We did not find such group differences. This
can potentially be explained by differences in the task. In our
modified two-step task, model-based control is more accurate than
model-free control, which is a feature that is absent in prior versions
of the task [27]. Moreover, model-based planning is more
demanding in the older version, requiring reasoning over stochastic
transitions (compared to the deterministic transitions in our
version). Nevertheless, a recent study using young adults provided
convergent evidence for our findings, in the form of a lack of an
association between alcohol use and model-based control [43].
The reward-magnitude manipulation in our task also changed

participants’ explore-exploit tradeoff (results are presented in

Fig. 2 Group differences in reward-related modulation in weighting parameter and risk sensitivity modulation. a Weighting parameter
reflecting model-based decision control. b Risk sensitivity measure determining the tradeoff between risk avoidance and risk seeking.
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Supplementary Section). On high-stakes trials, participants
reduced exploration and increased exploitation, picking the
high-value action in the first stage of our task, instead of choosing
the alternative. This pattern, which we have also previously
reported in healthy individuals [23], did not differ between the
Alcohol Users and Alcohol Non-Users. This finding assuages the
potential concern that Alcohol Users simply become less sensitive
to rewards and were therefore less inclined to use more model-
based control. Instead, these results reinforce the idea that Alcohol
Users are less flexible in arbitrating between RL strategies.
However, a previous study found reduced exploratory behavior
in individuals with alcohol use disorder [60]. Unfortunately,
differences between this task and ours limit our ability to make
direct comparisons.
Our results also showed that Alcohol Users showed stronger

transfer of reward learning from the second-stage to the first-
stage of the task. In other words, the RPE in the second stage of
the task had a comparatively greater influence on reward
expectations in the first-stage state of the following trial for users
compared to Alcohol Non-Users. This means that the model-free
systems of the Alcohol Users reflect outcomes of the second stage
from the previous trials more so than it does in Alcohol Non-Users.
This finding is consistent with previous research indicating that
individuals with a history of substance and alcohol use encounter
difficulties in transferring their learning effectively [61–64].

Specifically, they tend to make random choices, relying on past
experiences to judge the effectiveness of new observations and
behaviors [35, 65]. The overall implication is that substance and
Alcohol Users apply acquired knowledge differently in novel
situations, possibly due to challenges in making adaptive
decisions.
We also documented that risk sensitivity was higher for the

high- relative to low-stakes conditions for both groups, which is
consistent with prior literature [66]. Interestingly, however,
although Alcohol Users showed greater risk aversiveness in high-
compared to low-stakes trials, their risk aversiveness for high
stakes was still lower than that of Alcohol Non-Users, and the
increase in risk aversiveness from low- to high-stakes trials was
lower than that in Alcohol Non-Users. These results are consistent
with prior studies showing that Alcohol Users show more risky
decision making in high-reward magnitude contexts compared to
Alcohol Non-users [35]. Moreover, although model-based control
is typically associated with risk aversion and loss aversion [67], our
correlational results revealed that in Alcohol Users, greater model-
based control was associated with lower risk aversiveness during
high reward stakes, although the result did not survive validation
analyses. This behavior may be influenced more by emotional
instead of cognitive assessment of risk [68–70]. This highlights the
notion of maladaptive decision-making strategies/models
employed by Alcohol Users [59], greater use of which is associated
with riskier decision-making.
The results of this study should be viewed considering some

potential limitations. First, the characterization of alcohol use
which led to group stratification was determined based on ordinal
self-reported data from the CRISIS questionnaire, a measure
designed to assess changes in substance use and psychiatric
symptoms during the COVID-19 pandemic-related lockdowns and
our survey data was all collected during the pandemic time
window. Given our stratification measure and time window of
data collection, the alcohol use group included in our study may
reflect a stress-induced heavy-drinking population more so than a
heavy-drinking population in the absence of external stressors.
Thus, the generalizability of our sample to other populations may
be another limitation. However, it is important to note that the
group characterization was supported by significantly higher
AUDIT scores in Alcohol Users compared to Alcohol Non-Users,
validating the group stratification based on alcohol use severity.
However, comparison of results with those from prior studies is
limited since the clinical characteristics beyond AUDIT scores were
not assessed in this study. Second, even though our results show
that alcohol use diminishes the ability to shift between RL
strategies, it remains unclear why this is the case. One possibility is
that Alcohol Users are impaired in estimating the relative values of
both habitual and goal-directed strategies, leading to reduced
uncertainty about the appropriate strategy in dynamically
changing contexts. Another possibility is that Alcohol Users attach
a higher cost to switching between strategies, which would
suggest that their lack of arbitration reflects a motivational deficit.
Even though our data are unable to distinguish between these
explanations, they invite a novel research program aimed at doing
so. The third limitation of this survey-based study is the lack of
assessment of fluid intelligence and working memory. This could
have influenced the task performance and therefore limits the
generalizability of these results. Nevertheless, these results
provide an evidence-based foundation for future studies that
should assess alcohol use and other determinants of decision
making in more detail to examine the impact of frequency and
recency of alcohol use on reward-related decision making. Fourth,
the lack of assessment of other specific mental health disorders
may have confounded these results. The CRISIS questionnaire
includes data on whether participants had any history of mental
health diagnoses (binary: yes or no), and the proportion of those
with mental health prior diagnoses was comparable between the

Table 1. Demographics of Alcohol Non-Users and Alcohol Users

Demographic
Details

Alcohol
Non- Users

Alcohol
Users

t-test
statistics

n = 34 n =47

Gender

Male 11 (0.32) 6 (0.26) t(77) = 1.083,
p = 0.282Female 22 (0.65) 17 (0.74)

Other 1 (0.03) 4 (0.09)

Age

<18 Years 9 (0.26) 2 (0.04) t(75) = −4.395,
p < 0.00118–19 Years 4 (0.12) 4 (0.08)

20–21 Years 4 (0.12) 2 (0.04)

22–23 Years 4 (0.12) 12 (0.26)

24–5 Years 1 (0.03) 2 (0.04)

25–40 Years 12 (0.35) 9 (0.19)

>40 Years 0 (0) 12 (0.26)

Hispanic 6 (0.18) 10 (0.21) t(75) = −0.596,
p = 0.553

Race

White 19 (0.56) 26 (0.56) t(73)= −0.638,
p = 0.529Black 1 (0.03) 7 (0.15)

Other 8 (0.23) 14 (0.3)

Education

High School
/Diploma/GED

10 (0.3) 13 (0.28) t(75) = −0.072,
p = 0.943

College degree/
associate degree

16 (0.47) 19 (0.4)

Post Graduate
degree

8 (0.24) 11 (0.23)

Mental Health
Diagnosis

12 (0.35) 16 (0.34) t(61) = −0.930,
p = 0.356

AUDIT* 19 (0.89 ±
0.21)

40 (8.5 ±
12.32)

p < 0.001

*Continuous variables are represented by mean and standard deviation,
while categorical variables are represented by percentages.
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two groups. Lastly, this study could have benefited from a larger
sample size with varying alcohol use severity such that computa-
tional RL models can be effectively employed to understand the
relationship of reward-related decision making and alcohol use
severity.

CONCLUSIONS
We have shown that frequent alcohol use is associated with less
flexible arbitration between goal-directed (i.e., model-based) and
habit-based (i.e., model-free) control in situations where reward
magnitude increases, and with lower risk aversiveness in high
reward magnitude contexts. Although we expected greater goal-
directed control to be associated with greater risk aversiveness,
this relationship was inverted in Alcohol Users suggesting that the
decision models developed in Alcohol Users may not only be rigid
to varying reward values, but also associated with risky decision
making. Results from this behavioral study paves the way for
neuroimaging studies to further examine neurobiological under-
pinnings of maladaptive reward-related decision-making strate-
gies in Alcohol Users and to examine these effects in other
substance and/or behavioral addictions.

DATA AVAILABILITY
The datasets and scripts generated and analyzed during the current study are
available in the maplab@mssm.edu at https://osf.io/e5tvs/.
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